Counting reducible and singular bivariate polynomials

被引:10
|
作者
von zur Gathen, Joachim [1 ]
机构
[1] Univ Bonn, BIT, D-53113 Bonn, Germany
关键词
Bivariate polynomial; Finite fields; Combinatorics on polynomials; Counting problems;
D O I
10.1016/j.ffa.2008.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Among the bivariate polynomials over a finite field, most are irreducible. We count some classes of special polynomials, namely the reducible ones, those with a square factor, the "relatively irreducible" ones which are irreducible but factor over an extension field, and the singular ones, which have a root at which both partial derivatives vanish. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:944 / 978
页数:35
相关论文
共 50 条
  • [21] ROOT SEPARATION FOR POLYNOMIALS WITH REDUCIBLE DERIVATIVE
    Dubickas, Arturas
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1079 - 1086
  • [22] On the reducible quintic complete base polynomials
    Chen, Alex
    JOURNAL OF NUMBER THEORY, 2009, 129 (01) : 220 - 230
  • [23] Root separation for reducible integer Polynomials
    Bugeaud, Yann
    Dujella, Andrej
    ACTA ARITHMETICA, 2014, 162 (04) : 393 - 403
  • [24] Prime values of reducible polynomials, II
    Chen, YG
    Kun, G
    Pete, G
    Ruzsa, IZ
    Timár, A
    ACTA ARITHMETICA, 2002, 104 (02) : 117 - 127
  • [25] Bivariate affine Goncarov polynomials
    Lorentz, Rudolph
    Yan, Catherine H.
    DISCRETE MATHEMATICS, 2016, 339 (09) : 2371 - 2383
  • [26] On the bivariate permanent polynomials of graphs
    Liu, Shunyi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 529 : 148 - 163
  • [27] Bivariate Extension of Bell Polynomials
    Zheng, Yuanping
    Li, Nadia N.
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (08)
  • [28] Accurate evaluation of bivariate polynomials
    Du, Peibing
    Jiang, Hao
    Li, Housen
    Cheng, Lizhi
    Yang, Canqun
    2016 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES (PDCAT), 2016, : 51 - 56
  • [29] PROBABILISTIC BIVARIATE BELL POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    QUAESTIONES MATHEMATICAE, 2025,
  • [30] Bivariate Mersenne polynomials and matrices
    Vieira Alves, Francisco Regis
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (03) : 83 - 95