A new upper bound on the acyclic chromatic indices of planar graphs

被引:20
|
作者
Wang, Weifan [1 ]
Shu, Qiaojun [1 ]
Wang, Yiqiao [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Beijing Univ Chinese Med, Sch Management, Beijing 100029, Peoples R China
关键词
EDGE COLORINGS; NUMBER;
D O I
10.1016/j.ejc.2012.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a'(G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. It was conjectured that a' (G) <= Delta + 2 for any simple graph G with maximum degree Delta. In this paper, we prove that if G is a planar graph, then a' (G) <= Delta + 7. This improves a result by Basavaraju et al. [M. Basavaraju, L.S. Chandran, N. Cohen, F. Haver, T. Muller, Acyclic edge-coloring of planar graphs, SIAM J. Discrete Math. 25 (2011) 463-478], which says that every planar graph G satisfies a'(G) <= Delta + 12. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:338 / 354
页数:17
相关论文
共 50 条
  • [21] Acyclic Chromatic Index of 1-Planar Graphs
    Yang, Wanshun
    Wang, Yiqiao
    Wang, Weifan
    Liu, Juan
    Finbow, Stephen
    Wang, Ping
    MATHEMATICS, 2022, 10 (15)
  • [22] PRECISE UPPER BOUND FOR THE STRONG EDGE CHROMATIC NUMBER OF SPARSE PLANAR GRAPHS
    Borodin, Oleg V.
    Ivanova, Anna O.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 759 - 770
  • [23] Improved bounds for acyclic chromatic index of planar graphs
    Hou, Jianfeng
    Liu, Guizhen
    Wang, Guanghui
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) : 876 - 881
  • [24] Further result on acyclic chromatic index of planar graphs
    Wang, Tao
    Zhang, Yaqiong
    DISCRETE APPLIED MATHEMATICS, 2016, 201 : 228 - 247
  • [25] The r-acyclic chromatic number of planar graphs
    Wang, Guanghui
    Yan, Guiying
    Yu, Jiguo
    Zhang, Xin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (04) : 713 - 722
  • [26] Upper bounds on the acyclic chromatic index of degenerate graphs
    Anto, Nevil
    Basavaraju, Manu
    Hegde, Suresh Manjanath
    Kulamarva, Shashanka
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [27] Reexploring the upper bound for the chromatic number of graphs
    LI Shuchao 1
    2. Laboratory of Nonlinear Analysis
    Progress in Natural Science, 2004, (03) : 84 - 86
  • [28] Reexploring the upper bound for the chromatic number of graphs
    Li, SC
    Mao, JZ
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2004, 14 (03) : 276 - 278
  • [29] An upper bound for the chromatic number of line graphs
    King, A. D.
    Reed, B. A.
    Vetta, A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (08) : 2182 - 2187
  • [30] A New Upper Bound on the Chromatic Number of Graphs with No Odd Kt Minor
    Sergey Norin
    Zi-Xia Song
    Combinatorica, 2022, 42 : 137 - 149