Elliptic genera of toric varieties and applications to mirror symmetry

被引:62
|
作者
Borisov, LA [1 ]
Libgober, A
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Illinois, Dept Math, Chicago, IL 60607 USA
关键词
D O I
10.1007/s002220000058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper contains a proof that elliptic genus of a Calabi-Yau manifold is a Jacobi form, finds in which dimensions the elliptic genus is determined by the Hedge numbers and shows that elliptic genera of a Calabi-Yau hypersurface in a toric variety and its mirror coincide up to sign. The proof of the mirror property is based on the extension of elliptic genus to Calabi-Yau hypersurfaces in toric varieties with Gorenstein singularities.
引用
收藏
页码:453 / 485
页数:33
相关论文
共 50 条
  • [21] Mirror symmetry for abelian varieties
    Golyshev, V
    Lunts, V
    Orlov, D
    JOURNAL OF ALGEBRAIC GEOMETRY, 2001, 10 (03) : 433 - 496
  • [22] Mirror symmetry for toric branes on compact hypersurfaces
    Alim, M.
    Hecht, M.
    Mayr, P.
    Mertens, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [23] Strong arithmetic mirror symmetry and toric isogenies
    Magyar, Christopher
    Whitcher, Ursula
    HIGHER GENUS CURVES IN MATHEMATICAL PHYSICS AND ARITHMETIC GEOMETRY, 2018, 703 : 117 - 129
  • [24] Weighted blowups and mirror symmetry for toric surfaces
    Kerr, Gabriel
    ADVANCES IN MATHEMATICS, 2008, 219 (01) : 199 - 250
  • [25] Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces
    Ueda, Kazushi
    Yamazaki, Masahito
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 680 : 1 - 22
  • [26] Quantum K-theory of toric varieties, level structures, and 3d mirror symmetry
    Ruan, Yongbin
    Wen, Yaoxiong
    Zhou, Zijun
    ADVANCES IN MATHEMATICS, 2022, 410
  • [27] Equivariant Elliptic Cohomology, Toric Varieties, and Derived Equivalences
    Scherotzke, Sarah
    Sibilla, Nicolo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (24) : 14600 - 14636
  • [28] Homological mirror symmetry for toric del Pezzo surfaces
    Ueda, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (01) : 71 - 85
  • [29] Toric Calabi-Yau supermanifolds and mirror symmetry
    Belhaj, A
    Drissi, LB
    Rasmussen, J
    Saidi, EH
    Sebbar, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (28): : 6405 - 6418
  • [30] HODGE-THEORETIC MIRROR SYMMETRY FOR TORIC STACKS
    Coates, Tom
    Corti, Alessio
    Iritani, Hiroshi
    Tseng, Hsian-Hua
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 114 (01) : 41 - 115