ON THE CLIQUE NUMBER OF THE GENERATING GRAPH OF A FINITE GROUP

被引:24
|
作者
Lucchini, Andrea [1 ]
Maroti, Attila [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[2] Hungarian Acad Sci, Inst Math, H-1053 Budapest, Hungary
关键词
PROBABILISTIC METHODS; PROPER SUBGROUPS; PERMUTATIONS;
D O I
10.1090/S0002-9939-09-09992-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generating graph Gamma(C) of a finite group G is the graph defined on the elements of C with an edge connecting two distinct vertices if and only if they generate G. The maximum size of a complete subgraph in Gamma(G) is denoted by omega(G). We prove that if G is a non-cyclic finite group of Fitting height at most 2 that can be generated by 2 elements; then omega(G) = q + 1, where q is the size of a smallest chief factor of G which has more than one complement. We also show that if S is a non-abelian finite simple group and G is the largest direct power of S that can be generated by 2 elements, then omega(G) <= (1 + o(1))m(S), where m(S) denotes the minimal index of a proper subgroup in S.
引用
收藏
页码:3207 / 3217
页数:11
相关论文
共 50 条
  • [41] ON THE GENERATING GRAPH OF A SIMPLE GROUP
    Lucchini, Andrea
    Maroti, Attila
    Roney-Dougal, Colva M.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (01) : 91 - 103
  • [42] The non-commuting, non-generating graph of a finite simple group
    Freedman, Saul D.
    QUARTERLY JOURNAL OF MATHEMATICS, 2025, 76 (01): : 313 - 335
  • [43] The graph of the generating d-tuples of a finite soluble group and the swap conjecture
    Crestani, Eleonora
    Lucchini, Andrea
    JOURNAL OF ALGEBRA, 2013, 376 : 79 - 88
  • [44] GENERATING FORMULAS FOR NUMBER OF TREES IN GRAPH
    BEDROSIAN, SD
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1964, 277 (04): : 313 - &
  • [45] Generating set for the automorphism group of a graph group
    Laurence, MR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 : 318 - 334
  • [46] An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph
    Miao, Zhuqi
    Balasundaram, Balabhaskar
    INFORMS JOURNAL ON COMPUTING, 2020, 32 (03) : 763 - 778
  • [47] On the clique number of the complement of the annihilating ideal graph of a commutative ring
    Visweswaran S.
    Patel H.D.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (2): : 307 - 320
  • [48] On the Sum of k Largest Laplacian Eigenvalues of a Graph and Clique Number
    Hilal A. Ganie
    S. Pirzada
    Vilmar Trevisan
    Mediterranean Journal of Mathematics, 2021, 18
  • [49] UPPER-BOUNDS ON THE EDGE CLIQUE COVER NUMBER OF A GRAPH
    BRIGHAM, RC
    DUTTON, RD
    DISCRETE MATHEMATICS, 1984, 52 (01) : 31 - 37
  • [50] The generating graph of finite soluble groups
    Eleonora Crestani
    Andrea Lucchini
    Israel Journal of Mathematics, 2013, 198 : 63 - 74