Chemically robust conjugated polymer platform for thin-film sensors

被引:8
|
作者
Holt, A. L. [1 ]
Bearinger, J. P. [2 ]
Evans, C. L. [2 ]
Carter, S. A. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2010年 / 143卷 / 02期
基金
美国国家科学基金会;
关键词
Poly(3-hexylthiophene); Photoluminescence quenching; Surface modification; Conductivity; Ferric chloride; Iodine; POLYTHIOPHENE; PHOTOLUMINESCENCE; FLUORESCENCE; ELECTROLUMINESCENCE; CHEMOSENSORS; POLYPYRROLE;
D O I
10.1016/j.snb.2009.09.055
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To examine chemically robust thin conjugated polymer films for use as optical and conductometric sensors, we graft polythiophene and two alkyl-based derivatives to optically transparent substrates. Though structurally contrasting to other film deposition techniques, grafted polythiophene films preserve their documented absorption, luminescence and electrical properties. Photoluminescence intensities are sensitive to trace amounts of iron and iodine in solution with reasonable Stern-Volmer constants and downward sloping Stern-Volmer plots characteristic to thin-film sensors. Rising conductivities indicate chemical doping is responsible for photoluminescence quenching. We vary reaction times and solvents to optimize desired properties and produce robust polythiophene films, verified by X-ray photoemission spectroscopy, that are uniform across the substrate with thicknesses ranging from 20 to 200 nm and controllable levels of surface toughness. Due to steric effects, polythiophene and poly(3-methylthiophene) films exhibit the highest conductivities while poly(3-hexylthiophene) films exhibit greater photoluminescence efficiencies. These platforms show promise as thin films for in-solution sensing. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:600 / 605
页数:6
相关论文
共 50 条
  • [21] Corrugated neat thin-film conjugated polymer distributed-feedback lasers
    Holzer, W
    Penzkofer, A
    Pertsch, T
    Danz, N
    Bräuer, A
    Kley, EB
    Tillmann, H
    Bader, C
    Hörhold, HH
    APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 74 (4-5): : 333 - 342
  • [22] Amplifying Chiroptical Properties of Conjugated Polymer Thin-Film Using an Achiral Additive
    Kulkarni, Chidambar
    Meskers, Stefan C. J.
    Palmans, Anja R. A. n
    Meijer, E. W.
    MACROMOLECULES, 2018, 51 (15) : 5883 - 5890
  • [23] Robust Thin-Film Temperature Sensors Embedded on Nozzle Guide Vane Surface
    Duan, Franklin Li
    Xie, Ziyi
    Ji, Zhonglin
    Weng, Haotian
    AIAA JOURNAL, 2020, 58 (04) : 1441 - 1445
  • [24] Materials for thin-film wear sensors
    Kreider, KG
    Ruff, AW
    SURFACE & COATINGS TECHNOLOGY, 1996, 86-7 (1-3): : 557 - 563
  • [25] SUBSTRATES FOR THIN-FILM SENSORS AND ACTUATORS
    BROWN, JT
    ADLER, MDW
    AMERICAN CERAMIC SOCIETY BULLETIN, 1973, 52 (08): : 635 - 635
  • [26] THIN-FILM ANISOTROPIC RADIATION SENSORS
    UKHLINOV, GA
    KARIMOV, FC
    MARKOV, FV
    REZNIKOV, BL
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1985, 52 (06): : 366 - 368
  • [27] Thin-film sensors monitor defects
    Flinn, Edward D.
    AEROSPACE AMERICA, 2007, 45 (04) : 22 - 23
  • [28] THIN-FILM DIELECTRIC ION SENSORS
    NOGAMI, G
    MARUYAMA, H
    HONGO, K
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (08) : 2370 - 2373
  • [29] ANALYSIS OF THIN-FILM FIRE SENSORS
    ZENTAI, G
    ILLYEFALVIVITEZ, Z
    ELECTROCOMPONENT SCIENCE AND TECHNOLOGY, 1984, 11 (03): : 209 - 214
  • [30] THIN-FILM WAVEGUIDES FOR INERTIAL SENSORS
    HAAVISTO, JR
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 412 : 221 - 228