Chemically robust conjugated polymer platform for thin-film sensors

被引:8
|
作者
Holt, A. L. [1 ]
Bearinger, J. P. [2 ]
Evans, C. L. [2 ]
Carter, S. A. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2010年 / 143卷 / 02期
基金
美国国家科学基金会;
关键词
Poly(3-hexylthiophene); Photoluminescence quenching; Surface modification; Conductivity; Ferric chloride; Iodine; POLYTHIOPHENE; PHOTOLUMINESCENCE; FLUORESCENCE; ELECTROLUMINESCENCE; CHEMOSENSORS; POLYPYRROLE;
D O I
10.1016/j.snb.2009.09.055
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To examine chemically robust thin conjugated polymer films for use as optical and conductometric sensors, we graft polythiophene and two alkyl-based derivatives to optically transparent substrates. Though structurally contrasting to other film deposition techniques, grafted polythiophene films preserve their documented absorption, luminescence and electrical properties. Photoluminescence intensities are sensitive to trace amounts of iron and iodine in solution with reasonable Stern-Volmer constants and downward sloping Stern-Volmer plots characteristic to thin-film sensors. Rising conductivities indicate chemical doping is responsible for photoluminescence quenching. We vary reaction times and solvents to optimize desired properties and produce robust polythiophene films, verified by X-ray photoemission spectroscopy, that are uniform across the substrate with thicknesses ranging from 20 to 200 nm and controllable levels of surface toughness. Due to steric effects, polythiophene and poly(3-methylthiophene) films exhibit the highest conductivities while poly(3-hexylthiophene) films exhibit greater photoluminescence efficiencies. These platforms show promise as thin films for in-solution sensing. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:600 / 605
页数:6
相关论文
共 50 条
  • [1] A Thin-Film Platform for Chemical Gas Sensors
    Roslyakov I.V.
    Napolskii K.S.
    Stolyarov V.S.
    Karpov E.E.
    Ivashev A.V.
    Surtaev V.N.
    Russian Microelectronics, 2018, 47 (4) : 226 - 233
  • [2] Modeling thin-film piezoelectric polymer ultrasonic sensors
    Gonzalez, M. G.
    Sorichetti, P. A.
    Santiago, G. D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [3] Polymer thin-film transistors with chemically modified dielectric interfaces
    Salleo, A
    Chabinyc, ML
    Yang, MS
    Street, RA
    APPLIED PHYSICS LETTERS, 2002, 81 (23) : 4383 - 4385
  • [4] THIN-FILM SENSORS
    CHABICOVSKY, R
    ACTA POLYTECHNICA SCANDINAVICA-ELECTRICAL ENGINEERING SERIES, 1988, (63): : 94 - 115
  • [5] THIN-FILM SENSORS
    MARSHALL, JM
    HEPBURN, AR
    MATERIALS WORLD, 1994, 2 (03) : 129 - 132
  • [6] Prediction and phase segregation in thin-film of conjugated polymer blends
    Yan, LF
    Yang, F
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (11) : 1382 - 1391
  • [7] The transient response of capacitive thin-film polymer humidity sensors
    Dooley, J. Brandon
    O'Neal, Dennis L.
    HVAC&R RESEARCH, 2008, 14 (05): : 663 - 682
  • [8] Chemically Sensitized Thin-Film Bulk Acoustic Wave Resonators as Humidity Sensors
    Ashley, G. M.
    Kirby, P. B.
    Butler, T. P.
    Whatmore, R.
    Luo, J. K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) : J419 - J424
  • [9] High-mobility conjugated polymer thin-film transistors.
    Sirringhaus, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U627 - U628
  • [10] Thin-film wear sensors
    不详
    INDUSTRIAL CERAMICS, 1998, 18 (02): : 115 - 115