High-throughput sequencing of ribonucleic acid molecules is used increasingly to understand gene expression in organs, tissues, and therapies, at a single-cell level. To facilitate the discovery of the heterogeneity and cell-specific factors of the COVID-19 disease, we use an interpretable computational approach that derives cell mixtures from peripheral blood mononuclear cells of healthy donors, and influenza, asymptomatic, mild and severe COVID-19 patients. Cell mixtures are generated using hierarchical Bayesian modeling and are subsequently used as features in the gradient boosting tree classifier. Balanced accuracy of five-fold cross-validation was 68%, significantly higher than expected by random chance. Moreover, 11 out of 19 donors' samples were classified accurately. The main advantage of the mixture-based approach compared to the traditional feature-based classification, is its ability to capture associations between genes as well as between cells.
机构:
Jinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
Univ Macau, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
Univ Macau, Dept Elect & Comp Engn, Macau 999078, Peoples R ChinaJinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
Zhou, Binggui
Yang, Guanghua
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R ChinaJinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
Yang, Guanghua
Shi, Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
Univ Macau, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
Univ Macau, Dept Elect & Comp Engn, Macau 999078, Peoples R ChinaJinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
Shi, Zheng
Ma, Shaodan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Macau, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
Univ Macau, Dept Elect & Comp Engn, Macau 999078, Peoples R ChinaJinan Univ, Sch Intelligent Syst Sci & Engn, Zhuhai 519070, Peoples R China
机构:
Univ Ljubljana, Fac Med, Inst Biostat & Med Informat, Vrazov Trg 2, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Med, Inst Biostat & Med Informat, Vrazov Trg 2, Ljubljana 1000, Slovenia
Manevski, Damjan
Gorenjec, Nina Ruzic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Med, Inst Biostat & Med Informat, Vrazov Trg 2, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Med, Inst Biostat & Med Informat, Vrazov Trg 2, Ljubljana 1000, Slovenia
Gorenjec, Nina Ruzic
Kejzar, Natasa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Med, Inst Biostat & Med Informat, Vrazov Trg 2, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Med, Inst Biostat & Med Informat, Vrazov Trg 2, Ljubljana 1000, Slovenia
Kejzar, Natasa
Blagus, Rok
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Med, Inst Biostat & Med Informat, Vrazov Trg 2, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Med, Inst Biostat & Med Informat, Vrazov Trg 2, Ljubljana 1000, Slovenia
机构:
NYU, Dept Populat Hlth, Div Biostat, Grossman Sch Med, New York, NY 10016 USANYU, Dept Populat Hlth, Div Biostat, Grossman Sch Med, New York, NY 10016 USA
Um, Seungha
Adhikari, Samrachana
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Populat Hlth, Div Biostat, Grossman Sch Med, New York, NY 10016 USANYU, Dept Populat Hlth, Div Biostat, Grossman Sch Med, New York, NY 10016 USA
机构:
Queens Hosp Ctr, Icahn Sch Med Mt Sinai, Internal Med, New York, NY 11432 USAQueens Hosp Ctr, Icahn Sch Med Mt Sinai, Internal Med, New York, NY 11432 USA
Umar, Zaryab
Ilyas, Usman
论文数: 0引用数: 0
h-index: 0
机构:
Queens Hosp Ctr, Icahn Sch Med Mt Sinai, Internal Med, New York, NY 11432 USAQueens Hosp Ctr, Icahn Sch Med Mt Sinai, Internal Med, New York, NY 11432 USA
Ilyas, Usman
Nso, Nso
论文数: 0引用数: 0
h-index: 0
机构:
NYC Hlth & Hosp, Ichan Sch Med Mt Sinai, Dept Med, New York, NY USAQueens Hosp Ctr, Icahn Sch Med Mt Sinai, Internal Med, New York, NY 11432 USA