Spectral properties of the incompressible Navier-Stokes equations

被引:2
|
作者
Lauren, Fredrik [1 ]
Nordstrom, Jan [1 ,2 ]
机构
[1] Linkoping Univ, Dept Math, Computat Math, SE-58183 Linkoping, Sweden
[2] Univ Johannesburg, Dept Math & Appl Math, POB 524, ZA-2006 Auckland Pk, South Africa
关键词
Incompressible Navier-Stokes; Convergence to steady-state; Open boundary conditions; Dispersion relation; High-order accuracy; Summation-by-parts;
D O I
10.1016/j.jcp.2020.110019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The influence of different boundary conditions on the spectral properties of the incompressible Navier-Stokes equations is investigated. By using the Fourier-Laplace transform technique, we determine the spectra, extract the decay rate in time, and investigate the dispersion relation. In contrast to an infinite domain, where only diffusion affects the convergence, we show that also the propagation speed influence the rate of convergence to steady state for a bounded domain. Once the continuous equations are analyzed, we discretize using high-order finite-difference operators on summation-by-parts form and demonstrate that the continuous analysis carries over to the discrete setting. The theoretical results are verified by numerical experiments, where we highlight the necessity of high accuracy for a correct description of time-dependent phenomena. (C) 2021 The Authors. Published by Elsevier Inc.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Variational formulation of incompressible Navier-Stokes equations
    Ecer, Akin
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2023, 23 (06): : 381 - 387
  • [22] ON THE INCOMPRESSIBLE LIMIT OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    LIN, CK
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (3-4) : 677 - 707
  • [23] A Splitting Preconditioner for the Incompressible Navier-Stokes Equations
    Hu, Ze-Jun
    Huang, Ting-Zhu
    Tan, Ning-Bo
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (05) : 612 - 630
  • [24] Newton linearization of the incompressible Navier-Stokes equations
    Sheu, TWH
    Lin, RK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 44 (03) : 297 - 312
  • [25] Analyticity of the inhomogeneous incompressible Navier-Stokes equations
    Bae, Hantaek
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 200 - 206
  • [26] Stochastic nonhomogeneous incompressible Navier-Stokes equations
    Cutland, Nigel J.
    Enright, Brendan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) : 140 - 170
  • [27] Projection methods for the incompressible Navier-Stokes equations
    Zhang Qing-Hai
    Li Yang
    ACTA PHYSICA SINICA, 2021, 70 (13)
  • [28] A multigrid algorithm for the incompressible Navier-Stokes equations
    Swanson, RC
    Thomas, JL
    Roberts, TW
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2141 - 2144
  • [29] A Chimera method for the incompressible Navier-Stokes equations
    Houzeaux, G.
    Eguzkitza, B.
    Aubry, R.
    Owen, H.
    Vazquez, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (03) : 155 - 183
  • [30] MULTILEVEL BDDC FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Hanek, Martin
    Sistek, Jakub
    Burda, Pavel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : C359 - C383