Dynamic Feedback CMOS LNA, for UWB WLAN Transform-Domain Receiver Loss of Orthogonality

被引:0
|
作者
Zebdi, Mohamed [1 ]
Massicotte, Daniel [1 ]
机构
[1] Univ Quebec, Dept Elect & Comp Engn, Trois Rivieres, PQ G9A 5H7, Canada
关键词
CMOS; Low-power LNA; Dynamic Feedback; Multi-block; Ultra-wideband (UWB); Wireless LAN (WLAN); Transform-domain Receiver;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the selectivity problem, for the ultra-wide band (UWB), transform-domain receiver loss of orthogonality. A novel selective, low-power, multi-block low noise amplifier (LNA) for UWB, wireless local area network (WLAN) is proposed. When using a dynamic feedback with a specific inductive load range values, the UWB WLAN LNA is reduced to a simple second order circuit with zero at the origin, witch not only ensure a perfect stability over all the UWB frequency band, but almost. doubles the small signal gain, when reducing the frequency band between the two poles. In this design, the gain improvement add robustness to adjacent interference, lowers the noise figure by over than 1dB in the 5-6 GHz frequency range, and 2dB in the highest frequency band, witch leads to better use of the excellent linearity, selectivity, and impedance matching of the common-gate LNA. Experimental results indicate 27dB small signal gain at 5.6GHz, the noise-figure (NF) varies from 3.86dB to 2.78dB in the 5-6 GHz frequency range, drawing 3.9mA from 1.8v.
引用
收藏
页码:250 / 254
页数:5
相关论文
共 50 条
  • [31] Enhanced UWB CS-LNA with Inverse Filter and Shunt Feedback Resistor in 130nm CMOS
    Abedi, O.
    Yagoub, M. C. E.
    Abedi, A.
    2009 3RD INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS (SCS 2009), 2009, : 104 - 109
  • [32] A 5.7-GHz 0.18-μm CMOS gain-controlled differential LNA with current reuse for WLAN receiver
    Liao, CH
    Chuang, HR
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2003, 13 (12) : 526 - 528
  • [33] The wavelet transform-domain LMS adaptive filter employing dynamic selection of subband-coefficients
    Abadi, Mohammad Shams Esfand
    Mesgarani, Hamid
    Khademiyan, Seyed Mahmoud
    DIGITAL SIGNAL PROCESSING, 2017, 69 : 94 - 105
  • [34] High dynamic range mixer in CMOS 0.18 um technology for WLAN direct conversion receiver
    Nizhnik, O.
    Pokharel, R. K.
    Kanaya, H.
    Yoshida, K.
    2008 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOLS 1-4, 2008, : 143 - 146
  • [35] A 0.18 μm CMOS UWB LNA with New Feedback Configuration for Optimization Low Noise, High Gain and Small Area
    Chang, Y. C.
    Kao, H. L.
    Kao, C. H.
    Yang, C. H.
    Fu, Jeffrey S.
    Karmakar, Nemai C.
    Chang, L. C.
    PROCEEDINGS OF THE 2009 IEEE SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS AND SYSTEMS, 2009, : 194 - +
  • [36] Compressed History Matching: Exploiting Transform-Domain Sparsity for Regularization of Nonlinear Dynamic Data Integration Problems
    Jafarpour, Behnam
    Goyal, Vivek K.
    McLaughlin, Dennis B.
    Freeman, William T.
    MATHEMATICAL GEOSCIENCES, 2010, 42 (01) : 1 - 27
  • [37] Compressed History Matching: Exploiting Transform-Domain Sparsity for Regularization of Nonlinear Dynamic Data Integration Problems
    Behnam Jafarpour
    Vivek K. Goyal
    Dennis B. McLaughlin
    William T. Freeman
    Mathematical Geosciences, 2010, 42 : 1 - 27
  • [38] A Concurrent Dual-band CMOS Partial Feedback LNA with Noise and Input Impedance Matching Optimization for Advanced WLAN Applications
    Kim, Dong-Myeong
    Yang, Euibong
    Im, Donggu
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2021, 21 (05) : 356 - 363
  • [39] A 0.7 to 3 GHz wireless receiver front end in 65-nm CMOS with an LNA linearized by positive feedback
    Nejdel, Anders
    Tormanen, Markus
    Sjoland, Henrik
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2013, 74 (01) : 49 - 57
  • [40] A 0.7 to 3 GHz wireless receiver front end in 65-nm CMOS with an LNA linearized by positive feedback
    Anders Nejdel
    Markus Törmänen
    Henrik Sjöland
    Analog Integrated Circuits and Signal Processing, 2013, 74 : 49 - 57