A Survey on Knowledge Graph Embedding: Approaches, Applications and Benchmarks

被引:168
|
作者
Dai, Yuanfei [1 ]
Wang, Shiping [1 ,2 ]
Xiong, Neal N. [1 ,3 ]
Guo, Wenzhong [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[2] Fuzhou Univ, Key Lab Network Comp & Intelligent Informat Proc, Fuzhou 350108, Peoples R China
[3] Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK USA
关键词
knowledge graph embedding; knowledge representation; deep learning; statistical relational learning;
D O I
10.3390/electronics9050750
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A knowledge graph (KG), also known as a knowledge base, is a particular kind of network structure in which the node indicates entity and the edge represent relation. However, with the explosion of network volume, the problem of data sparsity that causes large-scale KG systems to calculate and manage difficultly has become more significant. For alleviating the issue, knowledge graph embedding is proposed to embed entities and relations in a KG to a low-, dense and continuous feature space, and endow the yield model with abilities of knowledge inference and fusion. In recent years, many researchers have poured much attention in this approach, and we will systematically introduce the existing state-of-the-art approaches and a variety of applications that benefit from these methods in this paper. In addition, we discuss future prospects for the development of techniques and application trends. Specifically, we first introduce the embedding models that only leverage the information of observed triplets in the KG. We illustrate the overall framework and specific idea and compare the advantages and disadvantages of such approaches. Next, we introduce the advanced models that utilize additional semantic information to improve the performance of the original methods. We divide the additional information into two categories, including textual descriptions and relation paths. The extension approaches in each category are described, following the same classification criteria as those defined for the triplet fact-based models. We then describe two experiments for comparing the performance of listed methods and mention some broader domain tasks such as question answering, recommender systems, and so forth. Finally, we collect several hurdles that need to be overcome and provide a few future research directions for knowledge graph embedding.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Weighted Knowledge Graph Embedding
    Zhang, Zhao
    Guan, Zhanpeng
    Zhang, Fuwei
    Zhuang, Fuzhen
    An, Zhulin
    Wang, Fei
    Xu, Yongjun
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 867 - 877
  • [22] Knowledge Graph Embedding: An Overview
    Ge, Xiou
    Wang, Yun Cheng
    Wang, Bin
    Kuo, C. -C. Jay
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2024, 13 (01)
  • [23] Knowledge Graph Embedding Compression
    Sachan, Mrinmaya
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 2681 - 2691
  • [24] Knowledge graph embedding with concepts
    Guan, Niannian
    Song, Dandan
    Liao, Lejian
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 38 - 44
  • [25] Location-Sensitive Embedding for Knowledge Graph Embedding
    Zhang S.
    Zhang W.
    Zhang, Wensheng (zhangwenshengia@hotmail.com), 1600, Institute of Computing Technology (33): : 913 - 919
  • [26] Research on Knowledge Graph Completion Based upon Knowledge Graph Embedding
    Feng, Tuoyu
    Wu, Yongsheng
    Li, Libing
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1335 - 1342
  • [27] TGformer: A Graph Transformer Framework for Knowledge Graph Embedding
    Shi, Fobo
    Li, Duantengchuan
    Wang, Xiaoguang
    Li, Bing
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 526 - 541
  • [28] Graph Embedding Based Recommendation Techniques on the Knowledge Graph
    Grad-Gyenge, Laszlo
    Kiss, Attila
    Filzmoser, Peter
    ADJUNCT PUBLICATION OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), 2017, : 354 - 359
  • [29] Knowledge graph embedding in a uniform space
    Tong, Da
    Chen, Shudong
    Ma, Rong
    Qi, Donglin
    Yu, Yong
    INTELLIGENT DATA ANALYSIS, 2024, 28 (01) : 33 - 55
  • [30] Enhance Knowledge Graph Embedding by Mixup
    Xie, Tianyang
    Ge, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 569 - 580