Document clustering with pairwise constraints

被引:0
|
作者
Kreesuradej, W [1 ]
Suwanlamai, A [1 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Fac Informat Technol, Bangkok 10520, Thailand
关键词
document clustering; pairwise constrained clustering; semi-supervised clustering;
D O I
10.1142/S0218001406004636
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes document clustering using Kohonen neural network with pairwise constraints. This algorithm works directly on textual information without mapping document into some representation that has quantitative features. The input level of the proposed neural network can directly receive a qualitative value without mapping the qualitative value into the numerical value. The proposed neural network is based on the architecture of text processing Kohonen neural network, the concepts of dissimilarity measure of symbolic objects and pairwise constrained concepts. As a result, the model can successfully assign cluster label to the objects.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 50 条
  • [41] Semi-supervised Spectral Clustering with automatic propagation of pairwise constraints
    Voiron, Nicolas
    Benoit, Alexandre
    Filip, Andrei
    Lambert, Patrick
    Ionescu, Bogdan
    2015 13TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2015,
  • [42] Active semi-supervised spectral clustering based on pairwise constraints
    Wang, Na
    Li, Xia
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (01): : 172 - 176
  • [43] Semi-supervised clustering with two types of background knowledge: Fusing pairwise constraints and monotonicity constraints
    Gonzalez-Almagro, German
    Sanchez-Bermejo, Pablo
    Suarez, Juan Luis
    Cano, Jose-Ramon
    Garcia, Salvador
    INFORMATION FUSION, 2024, 102
  • [44] Algorithms of Crisp, Fuzzy, and Probabilistic Clustering with Semi-supervision or Pairwise Constraints
    Miyamoto, Sadaaki
    Obara, Nobuhiro
    2013 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC), 2013, : 225 - 230
  • [45] Improving Image Contrastive Clustering Through Self-Learning Pairwise Constraints
    Guo, Yecheng
    Bai, Liang
    Yang, Xian
    Liang, Jiye
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 328 - 340
  • [46] Deep semi-supervised clustering based on pairwise constraints and sample similarity
    Qin, Xiao
    Yuan, Changan
    Jiang, Jianhui
    Chen, Long
    PATTERN RECOGNITION LETTERS, 2024, 178 : 1 - 6
  • [47] Semi-supervised deep embedded clustering with pairwise constraints and subset allocation
    Wang, Yalin
    Zou, Jiangfeng
    Wang, Kai
    Liu, Chenliang
    Yuan, Xiaofeng
    MENDELEEV COMMUNICATIONS, 2023, 164 (01) : 310 - 322
  • [48] Kernel parameter optimization for semi-supervised fuzzy clustering with pairwise constraints
    Na, Wang
    Xia, Li
    CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (02): : 297 - 300
  • [49] Improving Image Contrastive Clustering Through Self-Learning Pairwise Constraints
    Guo, Yecheng
    Bai, Liang
    Yang, Xian
    Liang, Jiye
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 328 - 340
  • [50] Generate pairwise constraints from unlabeled data for semi-supervised clustering
    Masud, Md Abdul
    Huang, Joshua Zhexue
    Zhong, Ming
    Fu, Xianghua
    DATA & KNOWLEDGE ENGINEERING, 2019, 123