A tractable model for indices approximating the growth optimal portfolio

被引:1
|
作者
Baldeaux, Jan [1 ]
Ignatieva, Katja [2 ]
Platen, Eckhard [1 ,3 ]
机构
[1] Univ Technol Sydney, Finance Discipline Grp, Sydney, NSW 2007, Australia
[2] Univ New S Wales, Australian Sch Business, Sch Risk & Actuarial Studies, Sydney, NSW 2052, Australia
[3] Univ Technol Sydney, Sch Math Studies, Sydney, NSW 2007, Australia
来源
关键词
growth optimal portfolio; constant elasticity of variance model; kernel estimation; diffusion coefficient function; derivative hedging; DIFFUSION-COEFFICIENT; FUNDAMENTAL THEOREM; TERM STRUCTURE; ARBITRAGE;
D O I
10.1515/snde-2012-0054
中图分类号
F [经济];
学科分类号
02 ;
摘要
The growth optimal portfolio (GOP) plays an important role in finance, where it serves as the numeraire portfolio, with respect to which contingent claims can be priced under the real world probability measure. This paper models the GOP using a time dependent constant elasticity of variance (TCEV) model. The TCEV model has high tractability for a range of derivative prices and fits well the dynamics of a global diversified world equity index. This is confirmed when pricing and hedging various derivatives using this index.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] A stochastic volatility model and optimal portfolio selection
    Zeng, Xudong
    Taksar, Michael
    QUANTITATIVE FINANCE, 2013, 13 (10) : 1547 - 1558
  • [22] Optimal Portfolio in a Regime-switching Model
    Valdez, Adrian Roy L.
    Vargiolu, Tiziano
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VII, 2013, 67 : 435 - 449
  • [23] The Optimal Robust Portfolio Model Based on CDaR
    Yu, Xing
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION APPLICATIONS (ICCIA 2012), 2012, : 904 - 906
  • [24] Optimal portfolio in a multiple-priors model
    Quenez, MC
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS IV, 2004, 58 : 291 - 321
  • [25] Stochastic programming model for the selection of an optimal portfolio
    Vakriniene, Sigute
    Pabedinskaite, Arnoldina
    9TH INTERNATIONAL CONFERENCE: MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, VOLS 1-3, 2008, : 414 - +
  • [26] Optimal Portfolio for the α-Hypergeometric Stochastic Volatility Model
    Cipriano, Fernanda
    Martins, Nuno F. M.
    Pereira, Diogo
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2021, 12 (01): : 226 - 253
  • [27] Analysis of optimal portfolio model under ambiguity
    Fan, Yulian
    Teng, Shuo
    Zhang, Qi
    2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [28] Portfolio Selection Model with Optimal Stopping Time
    Liang, Jianfeng
    ADVANCES IN BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, 2008, 5 : 228 - 235
  • [29] BALANCE OF PAYMENTS CRISES IN AN OPTIMAL PORTFOLIO MODEL
    CLAESSENS, S
    EUROPEAN ECONOMIC REVIEW, 1991, 35 (01) : 81 - 101
  • [30] Tractable Dual Optimal Stochastic Model Predictive Control: An Example in Healthcare
    Sehr, Martin A.
    Bitmead, Robert R.
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1223 - 1228