Bost-Connes systems, Hecke algebras, and induction

被引:7
|
作者
Laca, Marcelo [1 ]
Neshveyev, Sergey [2 ]
Trifkovic, Mak [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Univ Oslo, Dept Math, N-0316 Oslo, Norway
关键词
Bost-Connes systems; Hecke algebras; KMS states; correspondences; C-ASTERISK-ALGEBRAS; KMS STATES; COMPLEX MULTIPLICATION; PHASE-TRANSITIONS; PART; ENDOMORPHISMS;
D O I
10.4171/JNCG/125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Hecke algebra naturally associated with the affine group with totally positive multiplicative part over an algebraic number field K and we show that the C*-algebra of the Bost-Connes system for K can be obtained from our Hecke algebra by induction, from the group of totally positive principal ideals to the whole group of ideals. Our Hecke algebra is therefore a full corner, corresponding to the narrow Hilbert class field, in the Bost-Connes C*-algebra of K; in particular, the two algebras coincide if and only if K has narrow class number one. Passing the known results for the Bost-Connes system for K to this corner, we obtain a phase transition theorem for our Hecke algebra. In another application of induction we consider an extension L/K of number fields and we show that the Bost-Connes system for L embeds into the system obtained from the Bost-Connes system for K by induction from the group of ideals in K to the group of ideals in L. This gives a C*-algebraic correspondence from the Bost-Connes system for K to that for L. Therefore the construction of Bost-Connes systems can be extended to a functor from number fields to C*-dynamical systems with equivariant correspondences as morphisms. We use this correspondence to induce KMS-states and we show that for beta > 1 certain extremal KMS beta-states for L can be obtained, via induction and rescaling, from KMS[L:K]beta-states for K. On the other hand, for 0 < beta <= 1 every KMS[L:K]beta-state for K induces to an infinite weight.
引用
收藏
页码:525 / 546
页数:22
相关论文
共 50 条
  • [41] HECKE ALGEBRAS AND IMMANANTS
    JAMES, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 198 : 659 - 670
  • [42] On enveloping C*-algebras of Hecke algebras
    Palma, Rui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (12) : 2704 - 2731
  • [43] Type A Hecke algebras and related algebras
    K. Erdmann
    Archiv der Mathematik, 2004, 82 : 385 - 390
  • [44] Type A Hecke algebras and related algebras
    Erdmann, K
    ARCHIV DER MATHEMATIK, 2004, 82 (05) : 385 - 390
  • [45] On the idempotents of Hecke algebras
    Isaev, A. P.
    Molev, A. I.
    Os'kin, A. F.
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 85 (01) : 79 - 90
  • [46] Topologization of Hecke pairs and Hecke C*-algebras
    Glöckner, H
    Willis, GA
    TOPOLOGY PROCEEDINGS, VOL 26, NO 2, 2001-2002, 2002, 26 (02): : 565 - 591
  • [47] Continuous Hecke algebras
    Etingof, P
    Can, WL
    Ginzburg, V
    TRANSFORMATION GROUPS, 2005, 10 (3-4) : 423 - 447
  • [48] Units in Hecke algebras
    Alvis, D
    JOURNAL OF ALGEBRA, 1999, 216 (02) : 417 - 430
  • [49] Continuous Hecke algebras
    Pavel Etingof
    Wee Liang Gan
    Victor Ginzburg
    Transformation Groups, 2005, 10 : 423 - 447
  • [50] Bost-Connes-Marcolli systems for shimura varieties. Part I. Definitions and formal analytic properties
    Ha, E
    Paugam, F
    INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2005, (05): : 237 - 286