Limit Cycles Bifurcating from the Period Annulus of Quasi-Homogeneous Centers

被引:48
|
作者
Li, Weigu [1 ]
Llibre, Jaume [2 ]
Yang, Jiazhong [1 ]
Zhang, Zhifen [1 ]
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
Homogeneous centers; Quasi-homogeneous centers; Limit cycles; QUADRATIC HAMILTONIAN-SYSTEMS; COMPLETE ABELIAN-INTEGRALS; HILBERTS 16TH PROBLEM; VECTOR-FIELDS; POLYNOMIAL PERTURBATIONS; EXPONENTIAL ESTIMATE; ISOCHRONOUS CENTERS; ELLIPTIC INTEGRALS; LINEAR ESTIMATE; ALMOST-ALL;
D O I
10.1007/s10884-008-9126-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide upper bounds for the maximum number of limit cycles bifurcating from the period annulus of any homogeneous and quasi-homogeneous center, which can be obtained using the Abelian integral method of first order. We show that these bounds are the best possible using the Abelian integral method of first order. We note that these centers are in general non-Hamiltonian. As a consequence of our study we provide the biggest known number of limit cycles surrounding a unique singular point in terms of the degree n of the system for arbitrary large n.
引用
收藏
页码:133 / 152
页数:20
相关论文
共 50 条
  • [31] Birth of limit cycles bifurcating from a nonsmooth center
    Buzzi, Claudio A.
    de Carvalho, Tiago
    Teixeira, Marco A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (01): : 36 - 47
  • [32] Center Problems and Limit Cycle Bifurcations in a Class of Quasi-Homogeneous Systems
    Xiong, Yanqin
    Han, Maoan
    Wang, Yong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [33] On the Number of Limit Cycles Bifurcating from a Compound Polycycle
    Sheng, Lijuan
    Han, Maoan
    Tian, Yun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (07):
  • [34] Limit cycles bifurcating from a perturbed quartic center
    Coll, Bartomeu
    Llibre, Jaume
    Prohens, Rafel
    CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 317 - 334
  • [35] ON THE LIMIT CYCLES BIFURCATING FROM AN ELLIPSE OF A QUADRATIC CENTER
    Llibre, Jaume
    Schlomiuk, Dana
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 1091 - 1102
  • [36] Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones
    Pessoa, Claudio
    Ribeiro, Ronisio
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (08):
  • [37] Melnikov functions for period annulus, nondegenerate centers, heteroclinic and homoclinic cycles
    Li, WG
    Llibre, J
    Zhang, X
    PACIFIC JOURNAL OF MATHEMATICS, 2004, 213 (01) : 49 - 77
  • [38] THE NUMBER OF VANISHING CYCLES FOR A QUASI-HOMOGENEOUS MAPPING FROM C2 TO C3
    MOND, D
    QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (167): : 335 - 345
  • [39] On the Number of Limit Cycles Bifurcating from a Quartic Reversible Center
    Huang, Bo
    Peng, Linping
    Cui, Yong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (05)
  • [40] Limit Cycles Bifurcating from a Class of Cubic Hamiltonian Systems
    Chen, Yuanyuan
    Yu, Jiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (06):