Inference in semiparametric dynamic models for binary longitudinal data

被引:48
|
作者
Chib, Siddhartha [1 ]
Jeliazkov, Ivan
机构
[1] Washington Univ, Sch Business, St Louis, MO 63130 USA
[2] Univ Calif Irvine, Dept Econ, Irvine, CA 92697 USA
关键词
average covariate effect; Bayes factor; Bayesian model comparison; clustered data; correlated binary data; labor force participation; longitudinal data; marginal likelihood; Markov chain Monte Carlo; Markov process priors; nonparametric estimation; partially linear model;
D O I
10.1198/016214505000000871
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article deals with the analysis of a hierarchical sermparametric model for dynamic binary longitudinal responses. The main complicating components of the model are an unknown covariate function and serial correlation in the errors. Existing estimation methods for models with these features are of O(N-3), where N is the total number of observations in the sample. Therefore, nonparametric estimation is largely infeasible when the sample size is large, as in typical in the longitudinal setting. Here we propose a new O(N) Markov chain Monte Carlo based algorithm for estimation of the nonparametric function when the errors are correlated, thus contributing to the growing literature on semiparametric and nonparametric mixed-effects models for binary data. In addition, we address the problem of model choice to enable the formal comparison of our semiparametric model with competing parametric and semiparametric specifications. The performance of the methods is illustrated with detailed studies involving simulated and real data.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 50 条
  • [21] Generalized empirical likelihood inference in semiparametric regression model for longitudinal data
    Gao Rong Li
    Ping Tian
    Liu Gen Xue
    Acta Mathematica Sinica, English Series, 2008, 24
  • [22] Generalized Empirical Likelihood Inference in Semiparametric Regression Model for Longitudinal Data
    Gao Rong LI College of Applied Sciences
    ActaMathematicaSinica(EnglishSeries), 2008, 24 (12) : 2029 - 2040
  • [23] Semiparametric Bayes Local Additive Models for Longitudinal Data
    Hua Z.
    Zhu H.
    Dunson D.B.
    Statistics in Biosciences, 2015, 7 (1) : 90 - 107
  • [24] Generalized Empirical Likelihood Inference in Semiparametric Regression Model for Longitudinal Data
    Li, Gao Rong
    Tian, Ping
    Xue, Liu Gen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (12) : 2029 - 2040
  • [25] Semiparametric Bayes analysis of longitudinal data treatment models
    Chib, S
    Hamilton, BH
    JOURNAL OF ECONOMETRICS, 2002, 110 (01) : 67 - 89
  • [26] On Variance Components in Semiparametric Mixed Models for Longitudinal Data
    Li, Zaixing
    Zhu, Lixing
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (03) : 442 - 457
  • [27] Exclusion Restrictions in Dynamic Binary Choice Panel Data Models: Comment on "Semiparametric Binary Choice Panel Data Models Without Strictly Exogenous Regressors"
    Chen, Songnian
    Khan, Shakeeb
    Tang, Xun
    ECONOMETRICA, 2019, 87 (05) : 1781 - 1785
  • [28] GEE-smoothing spline for semiparametric estimation of longitudinal binary data
    Suliadi
    Ibrahim, Noor Akma
    Daud, Isa
    Krishnarajah, Isthrinayagy S.
    International Journal of Applied Mathematics and Statistics, 2010, 18 (S10): : 82 - 95
  • [29] GEE-Smoothing Spline for Semiparametric Estimation of Longitudinal Binary Data
    Suliadi
    Ibrahim, Noor Akma
    Daud, Isa
    Krishnarajah, Isthrinayagy S.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2010, 18 (S10): : 82 - 95
  • [30] Estimation and inference of semiparametric models using data from several sources
    Buchinsky, Moshe
    Li, Fanghua
    Liao, Zhipeng
    JOURNAL OF ECONOMETRICS, 2022, 226 (01) : 80 - 103