The effect of decreasing permafrost stability on ecosystem carbon in the northeastern margin of the Qinghai-Tibet Plateau

被引:5
|
作者
Liu, Wenjie [1 ,2 ]
Chen, Shengyun [2 ]
Liang, Junyi [3 ,4 ]
Qin, Xiang [2 ]
Kang, Shichang [2 ]
Ren, Jiawen [2 ]
Qin, Dahe [2 ]
机构
[1] Hainan Univ, Inst Trop Agr & Forestry, Haikou 570228, Hainan, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Qilian Shan Stn Glaciol & Ecol Environm, State Key Lab Cryospher Sci, Lanzhou 730000, Gansu, Peoples R China
[3] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
SOIL ORGANIC-CARBON; ACTIVE-LAYER; ALPINE GRASSLANDS; LAND DEGRADATION; ALKALINE SOILS; CLIMATE-CHANGE; RESPIRATION; IMPACTS; PATTERN; CO2;
D O I
10.1038/s41598-018-22468-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The objective of this study is to investigate the effect of decreased permafrost stability on carbon storage of the alpine ecosystems in the northeastern margin of the Qinghai-Tibet Plateau. During July and August 2013, we selected 18 sites in five types of permafrost (stable, substable, transitional, unstable, and extremely unstable) regions. We measured aboveground phytomass carbon (APC) and soil respiration (SR), soil inorganic carbon (SIC), soil organic carbon (SOC), belowground phytomass carbon, and soil properties down to 50 cm at same types of soils and grasslands. The results indicated that ecosystem carbon in cold calcic soils first decreased and then increased as the permafrost stability declined. Overall, decreasing permafrost stability was expected to reduce ecosystem carbon in meadows, but it was not obvious in swamp meadows and steppes. APC decreased significantly, but SIC and SOC in steppes first decreased and then increased with declining permafrost stability. Soil clay fraction and soil moisture were the controls for site variations of ecosystem carbon. The spatial variations in SR were possibly controlled by soil moisture and precipitation. This meant that alpine ecosystems carbon reduction was strongly affected by permafrost degradation in meadows, but the effects were complex in swamp meadows and steppes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Settlement of embankments in permafrost regions in the Qinghai-Tibet Plateau
    Qi Jilin
    Yu, Sheng
    Zhang Jianming
    Zhi, Wen
    NORSK GEOGRAFISK TIDSSKRIFT-NORWEGIAN JOURNAL OF GEOGRAPHY, 2007, 61 (02) : 49 - 55
  • [32] Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau
    WU JiChunSHENG YuWU QingBai WEN Zhi State Key Laboratory of Frozen Soil EngineeringCold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhou China
    Science in China(Series D:Earth Sciences), 2010, 53 (01) : 150 - 158
  • [33] Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau
    Cheng, Guodong
    Zhao, Lin
    Li, Ren
    Wu, Xiaodong
    Sheng, Yu
    Hu, Guojie
    Zou, Defu
    Jin, Huijun
    Li, Xin
    Wu, Qingbai
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (27): : 2783 - 2795
  • [35] No protection of permafrost due to desertification on the Qinghai-Tibet Plateau
    Wu, Qingbai
    Yu, Wenbing
    Jin, Huijun
    SCIENTIFIC REPORTS, 2017, 7
  • [36] Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau
    JiChun Wu
    Yu Sheng
    QingBai Wu
    Zhi Wen
    Science in China Series D: Earth Sciences, 2010, 53 : 150 - 158
  • [37] Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau
    Wu JiChun
    Sheng Yu
    Wu QingBai
    Wen Zhi
    SCIENCE CHINA-EARTH SCIENCES, 2010, 53 (01) : 150 - 158
  • [38] Permafrost Distribution Research Progress on Qinghai-Tibet Plateau
    Xie, Zhenhong
    2012 INTERNATIONAL CONFERENCE ON FUTURE ENERGY, ENVIRONMENT, AND MATERIALS, PT B, 2012, 16 : 1022 - 1026
  • [39] Evolutionary characteristics and zoning of ecosystem functional stability on the Qinghai-Tibet Plateau
    Wang Q.
    Cao W.
    Huang L.
    Dili Xuebao/Acta Geographica Sinica, 2023, 78 (05): : 1104 - 1118
  • [40] Type Classification and Engineering Stability Evaluation of Permafrost Wetlands on the Qinghai-Tibet Plateau
    Mao, Xuesong
    Zhao, Ying
    Wu, Qian
    Huang, Wanjun
    Han, Liangqing
    FRONTIERS IN EARTH SCIENCE, 2022, 10