Machine Learning and Air Quality Modeling

被引:0
|
作者
Keller, Christoph A. [1 ,2 ]
Evans, Mathew J. [3 ]
Kutz, J. Nathan [4 ]
Pawson, Steven [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA
[2] Univ Space Res Assoc USRA, Columbia, MD USA
[3] Univ York, Wolfson Atmospher Chem Lab, York, N Yorkshire, England
[4] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
Air Quality Modeling; Machine Learning; Big Data Analytics; Statistical Sub-samplitlg; EMPIRICAL INTERPOLATION METHOD; REDUCTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Air quality models are limited by the computational costs associated with the simulation of the complex chemical and dynamical processes of reactive pollutants in the atmosphere. We discuss here the potential usage of machine learning and reduced-order modeling techniques to mitigate some of these limitations. We first give an overview of three new methods emerging from the field of signal processing - sparse sampling, randomized matrix decompositions and the construction of reduced order models - and discuss them in the context of air quality modeling. In the second part we discuss the substitution of the standard chemical solver of the chemistry model with a random forest regression model trained through machine learning. We find that this approach shows promising initial results for important air pollutants such as ozone (O-3), predicting concentrations that deviate less than 10% from the values computed by the traditional model. The here highlighted methods all have the potential to significantly reduce the computational burden of air quality models while maintaining the model's capability to capture all features relevant to air quality. Such lightweight air quality models offer new opportunities for air quality forecasting and to assimilate the rapidly increasing array of air quality observations.
引用
收藏
页码:4570 / 4576
页数:7
相关论文
共 50 条
  • [21] Predicting the quality of air using supervised techniques of machine learning
    Sai Kumar, G.
    Mahalakshmi, D.
    Test Engineering and Management, 2019, 81 (11-12): : 5393 - 5398
  • [22] Air quality monitoring using mobile microscopy and machine learning
    Wu, Yi-Chen
    Shiledar, Ashutosh
    Li, Yi-Cheng
    Wong, Jeffrey
    Feng, Steve
    Chen, Xuan
    Chen, Christine
    Jin, Kevin
    Janamian, Saba
    Yang, Zhe
    Ballard, Zachary Scott
    Gorocs, Zoltan
    Feizi, Alborz
    Ozcan, Aydogan
    LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e17046 - e17046
  • [23] Air Quality Prediction System Using Machine Learning Models
    Chaturvedi, Pooja
    WATER AIR AND SOIL POLLUTION, 2024, 235 (09):
  • [24] Enhancing Air Quality Forecasting Using Machine Learning Techniques
    Shahbazi, Zeinab
    Shahbazi, Zahra
    Nowaczyk, Slawomir
    IEEE ACCESS, 2024, 12 : 197290 - 197299
  • [25] Air quality monitoring using mobile microscopy and machine learning
    Yi-Chen Wu
    Ashutosh Shiledar
    Yi-Cheng Li
    Jeffrey Wong
    Steve Feng
    Xuan Chen
    Christine Chen
    Kevin Jin
    Saba Janamian
    Zhe Yang
    Zachary Scott Ballard
    Zoltán Göröcs
    Alborz Feizi
    Aydogan Ozcan
    Light: Science & Applications, 2017, 6 : e17046 - e17046
  • [26] Air Quality Prediction Based on Wavelet Analysis and Machine Learning
    Duan J.
    Ren Q.
    Strategic Planning for Energy and the Environment, 2023, 42 (01) : 119 - 136
  • [27] A Machine Learning Model for Air Quality Prediction for Smart Cities
    Mahalingam, Usha
    Elangovan, Kirthiga
    Dobhal, Himanshu
    Valliappa, Chocko
    Shrestha, Sindhu
    Kedam, Giriprasad
    2019 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET 2019): ADVANCING WIRELESS AND MOBILE COMMUNICATIONS TECHNOLOGIES FOR 2020 INFORMATION SOCIETY, 2019, : 452 - 457
  • [28] Machine learning and statistical models for predicting indoor air quality
    Wei, Wenjuan
    Ramalho, Olivier
    Malingre, Laeticia
    Sivanantham, Sutharsini
    Little, John C.
    Mandin, Corinne
    INDOOR AIR, 2019, 29 (05) : 704 - 726
  • [29] Machine learning-based prediction of air quality index and air quality grade: a comparative analysis
    S. A. Aram
    E. A. Nketiah
    B. M. Saalidong
    H. Wang
    A.-R. Afitiri
    A. B. Akoto
    P. O. Lartey
    International Journal of Environmental Science and Technology, 2024, 21 : 1345 - 1360
  • [30] Machine Learning Techniques for Air Quality Forecasting and Study on Real-Time Air Quality Monitoring
    Hable-Khandekar, Varsha
    Srinath, Pravin
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,