PARTIAL SUMS OF GENERALIZED STRUVE FUNCTIONS

被引:16
|
作者
Yagmur, Nihat [1 ]
Orhan, Halit [2 ]
机构
[1] Erzincan Univ, Fac Arts & Sci, Dept Math, TR-24000 Erzincan, Turkey
[2] Ataturk Univ, Dept Math, Fac Sci, TR-25240 Erzurum, Turkey
关键词
partial sums; analytic functions; generalized Struve functions; Struve and modified Struve functions;
D O I
10.18514/MMN.2016.1419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (f(v, d, c))(n) (z) = z + Sigma(n)(k=1) b(k)z(k+1) be the sequence of partial sums of generalized and normalized Struve functions f(v, d, c) (z) = z + Sigma(infinity)(k=1) b(k)z(k+1) where b(k) = (-c/4)(k)/(3/2)(k)(F)(k) and F := v + (d+2)/2 not equal 0, -1, -2, .... The purpose of the present paper is to determine lower bounds for R{f(v, d, c) (z)/(f(v, d, c))(n) (z)}, R{(f(v, d, c))(n) (z)/f(v, d, c) (z)}, R{f'(v, d, c) (z)/(f(v, d, c))'(n) (z)} and R{(f(v, d, c))'(n) (z)/f'(v, d, c) (z)}. Furthermore, we give lower bounds for R{Lambda[f(v, d, c)](z)/Lambda[f(v, d, c)])(n) (z)} and R{Lambda[f(v, d, c)])(n)(z)/Lambda[f(v, d, c)](n) (z)} , where Lambda[f(v, d, c)] the Alexander transform of f(v, d, c).
引用
收藏
页码:657 / 670
页数:14
相关论文
共 50 条