New "omic" technologies and their application to systems biology approaches offer new opportunities for biomarker discovery in complex disorders, including multiple sclerosis (MS). Recent studies using massive genotyping, DNA arrays, antibody arrays, proteomics, glycomics, and metabolomics from different tissues (blood, cerebrospinal fluid, brain) have identified many molecules associated with MS, defining both susceptibility and functional targets (e.g., biomarkers). Such discoveries involve many different levels in the complex organizational hierarchy of humans (DNA. RNA, protein, etc.), and integrating these datasets into a coherent model with regard to MS pathogenesis would be a significant step forward. Given the dynamic and heterogeneous nature of MS, validating biomarkers is mandatory. To develop accurate markers of disease prognosis or therapeutic response that are clinically useful, combining molecular, clinical, and imaging data is necessary. Such an integrative approach would pave the way towards better patient care and more effective clinical trials that test new therapies, thus bringing the paradigm of personalized medicine in MS one step closer. (C) 2012 Elsevier B.V. All rights reserved.