Discrete heat transfer model with space-time nonlocality

被引:0
|
作者
Eremin, A. V. [1 ]
Kishov, E. A. [2 ]
Popov, A. I. [1 ]
机构
[1] Samara State Tech Univ, Dept Ind Heat Power Engn, Molodogvardeyskaya St,Bldg 244, Samara 443100, Russia
[2] Samara Natl Res Univ, 34 Moskovskoye Shosse, Samara 443086, Russia
基金
俄罗斯科学基金会;
关键词
Relaxation properties; Thermal inertia; Discrete model; Finite element method; Numerical solution; Computational algorithm; ANSYS Parametric Design Language; STRONGLY NONEQUILIBRIUM MODEL; THERMAL RELAXATION; CONDUCTION; OSCILLATIONS; FOURIER; ROD;
D O I
10.1016/j.icheatmasstransfer.2022.106346
中图分类号
O414.1 [热力学];
学科分类号
摘要
The study of processes occurring under locally non-equilibrium conditions is of great interest due to the intensive development of laser technologies and the emerging opportunity to carry out technological operations under extreme conditions (at ultrahigh temperatures, pressures and their gradients). This paper presents the results of the development for a discrete mathematical model of thermal conductivity that takes into account the inertia of the heat transfer process in solids. A computational algorithm using the APDL language has been developed on the basis of the finite element method. APDL (ANSYS Parametric Design Language) is a scripting language that you can use to automate common tasks or even create your own model expressed in terms of parameters (variables). Developed algorithm allows one to automatically calculate temperature fields in solids of arbitrary geometric shape taking into account the heat transfer inertia. The APDL algorithm is adapted for the ANSYS software product which makes it available to a wide range of users. Verification of the algorithm developed is performed by comparing the obtained numerical results with the exact analytical solution of the model task.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Inflaton Space-Time: A Discrete Quantum Space-Time Model Underlying the Standard Models of Particle Physics and Cosmology
    Dolan, Richard P.
    PHYSICS ESSAYS, 2006, 19 (03) : 370 - 405
  • [22] Anisotropic Landau-Lifshitz model in discrete space-time
    Krajnik, Ziga
    Ilievski, Enej
    Prosen, Tomaz
    Pasquier, Vincent
    SCIPOST PHYSICS, 2021, 11 (03):
  • [23] THE DISCRETE SPACE-TIME AND QUANTUM ELECTRODYNAMICS
    PLOKHOTNIKOV, KE
    DOKLADY AKADEMII NAUK SSSR, 1988, 301 (06): : 1362 - 1366
  • [24] Integrable nonlinear Klein-Gordon systems with PT nonlocality and/or space-time exchange nonlocality
    Jia, Man
    Lou, S. Y.
    APPLIED MATHEMATICS LETTERS, 2022, 130
  • [25] Space-Time Discrete KPZ Equation
    Cannizzaro, G.
    Matetski, K.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 358 (02) : 521 - 588
  • [26] Discrete Space-Time and Lorentz Symmetry
    B. G. Sidharth
    International Journal of Theoretical Physics, 2004, 43 : 1857 - 1861
  • [27] Umbral deformations on discrete space-time
    Zachos, Cosmas K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (13): : 2005 - 2014
  • [28] Nonassociative Geometry and Discrete Space-Time
    Lev Sabinin
    International Journal of Theoretical Physics, 2001, 40 : 351 - 358
  • [29] Discrete Space-time and Lorentz Transformations
    Jensen, Gerd
    Pommerenke, Christian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01): : 123 - 135
  • [30] Causal fermions in discrete space-time
    Farrelly, Terence C.
    Short, Anthony J.
    PHYSICAL REVIEW A, 2014, 89 (01):