Acylamino functionalized triazine-based porous organic polymers for efficient Cd2+ capture

被引:0
|
作者
Hao, Aiping [1 ]
Peng, Rongxin [2 ]
Huang, Jianhan [2 ]
机构
[1] Hunan Univ Arts & Sci, Coll Chem & Mat, Changde 415000, Peoples R China
[2] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Triazine; Porous organic polymers (POPs); Adsorption; CROSS-LINKED POLYMERS; ONE-POT SYNTHESIS; AQUEOUS-SOLUTIONS; HEAVY-METALS; HIGHLY EFFICIENT; CADMIUM REMOVAL; ADSORPTION; CD(II); IONS; PB(II);
D O I
10.5004/dwt.2020.25709
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Functionalized porous organic polymers (POPs) with high Brunauer-Emmett-Teller surface area (S-BET) are promising for the removal of heavy metals while their synthesis remains a challenge. A kind of acylamino functionalized triazine-based POPs was developed from melamine and trimesic acid by one-pot polycondensation in this study. The resultant polymers were applied for Cd2+ removal from aqueous solution. These polymers had controllable S-BET of 246-463 m(2)/g with the predominant mesoporous distribution. Due to their well-constructed porosity and plentiful acylamino groups, they were efficient for Cd2+ removal with the maximum capacity of 392.5 mg/g at pH = 6. The adsorption was very fast and less than 15 min was enough to attain the equilibrium. Analysis of the mechanism revealed that the embedded acylamino and triazine ring played a role due to the strong chelating of the oxygen and nitrogen with Cd2+.
引用
收藏
页码:256 / 266
页数:11
相关论文
共 50 条
  • [21] Triazine-Based Conjugated Microporous Polymers for Efficient Hydrogen Production
    Hao, Wenbo
    Chen, Renzeng
    Zhang, Yue
    Wang, Yuancheng
    Zhao, Yingjie
    ACS OMEGA, 2021, 6 (37): : 23782 - 23787
  • [22] Imidazolium- and Triazine-Based Porous Organic Polymers for Heterogeneous Catalytic Conversion of CO2 into Cyclic Carbonates
    Zhong, Hong
    Su, Yanqing
    Chen, Xingwei
    Li, Xiaoju
    Wang, Ruihu
    CHEMSUSCHEM, 2017, 10 (24) : 4855 - 4863
  • [23] Porphyrin-Based Triazine Polymers and Their Derived Porous Carbons for Efficient CO2 Capture
    Guo, Jiangfei
    Wang, Lizhi
    Huang, Jianhan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (07) : 3205 - 3212
  • [24] A triazine-based covalent organic polymer for efficient CO2 adsorption
    Gomes, Ruth
    Bhanja, Piyali
    Bhaumik, Asim
    CHEMICAL COMMUNICATIONS, 2015, 51 (49) : 10050 - 10053
  • [25] Highly Selective CO2 Capture by Triazine-Based Benzimidazole-Linked Polymers
    Sekizkardes, Ali Kemal
    Altarawneh, Suha
    Kahveci, Zafer
    Islamoglu, Timur
    El-Kaderi, Hani M.
    MACROMOLECULES, 2014, 47 (23) : 8328 - 8334
  • [26] Triazine-based covalent organic polycalix[4]arenes for highly efficient and reversible iodine capture in water
    Zhang, Zhizhong
    Li, Liang
    An, Duo
    Li, Hanxue
    Zhang, Xinghua
    Journal of Materials Science, 2020, 55 (04): : 1854 - 1864
  • [27] Triazine-based covalent organic polycalix[4]arenes for highly efficient and reversible iodine capture in water
    Zhang, Zhizhong
    Li, Liang
    An, Duo
    Li, Hanxue
    Zhang, Xinghua
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (04) : 1854 - 1864
  • [28] Triazine-based covalent organic polycalix[4]arenes for highly efficient and reversible iodine capture in water
    Zhizhong Zhang
    Liang Li
    Duo An
    Hanxue Li
    Xinghua Zhang
    Journal of Materials Science, 2020, 55 : 1854 - 1864
  • [29] Adsorptive removal of Cd2+ from aqueous solutions by a highly stable covalent triazine-based framework
    Ghazi, Zahid Ali
    Khattak, Abdul Muqsit
    Iqbal, Rashid
    Ahmad, Rashid
    Khan, Adnan Ali
    Usman, Muhammad
    Nawaz, Faheem
    Ali, Wajid
    Felegari, Zahra
    Jan, Saad Ullah
    Iqbal, Azhar
    Ahmad, Aziz
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (12) : 10234 - 10242
  • [30] Effect of Diaminopropane on Formation of Triazine-based Covalent Organic Polymer for CO2 Capture
    Lee, Siew-Pei
    Mellon, N.
    Shariff, A. M.
    Leveque, Jean-Marc
    PROCEEDING OF 4TH INTERNATIONAL CONFERENCE ON PROCESS ENGINEERING AND ADVANCED MATERIALS (ICPEAM 2016), 2016, 148 : 184 - 188