A classification programme of generalized Dynkin diagrams

被引:1
|
作者
Zuber, JB
机构
[1] CEA, Yvette, France
关键词
graph theory; Dynkin diagrams; coxeter graphs;
D O I
10.1016/S0895-7177(97)00209-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this note is to present a problem of classification of graphs according to their spectral properties. This problem is encountered in several issues of current interest in mathematical physics. The graphs which appear are generalizations both of the simply laced Dynkin diagrams (i.e., of ADE-type) and of fusion graphs drawn on the weight lattices of the sl(N) Lie algebras.
引用
收藏
页码:275 / 279
页数:5
相关论文
共 50 条
  • [31] Subsectors, Dynkin diagrams and new generalised geometries
    Strickland-Constable, Charles
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (08):
  • [32] On divisible weighted Dynkin diagrams and reachable elements
    Dmitri Panyushev
    Transformation Groups, 2010, 15 : 983 - 999
  • [33] Chip firing on Dynkin diagrams and McKay quivers
    Georgia Benkart
    Caroline Klivans
    Victor Reiner
    Mathematische Zeitschrift, 2018, 290 : 615 - 648
  • [34] MAPS INTO DYNKIN DIAGRAMS ARISING FROM REGULAR MONOIDS
    AUGUSTINE, MK
    PUTCHA, MS
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1989, 47 : 313 - 321
  • [35] Logarithmic derivatives and generalized Dynkin operators
    Frédéric Menous
    Frédéric Patras
    Journal of Algebraic Combinatorics, 2013, 38 : 901 - 913
  • [36] Dynkin diagrams of hyperbolic Kac-Moody superalgebras
    Tripathy, LK
    Das, B
    Pati, KC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08): : 2087 - 2097
  • [37] Dynkin diagrams and integrable models based on Lie superalgebras
    Evans, JM
    Madsen, JO
    NUCLEAR PHYSICS B, 1997, 503 (03) : 715 - 746
  • [38] Toda frames, harmonic maps and extended Dynkin diagrams
    Carberry, Emma
    Turner, Katharine
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 52 : 142 - 157
  • [39] Morse theory relations for Coxeter-Dynkin diagrams
    G. G. Il'yuta
    Functional Analysis and Its Applications, 2000, 34 : 219 - 222
  • [40] Cluster braid groups of Coxeter-Dynkin diagrams
    Han, Zhe
    He, Ping
    Qiu, Yu
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 208