A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates

被引:55
|
作者
Brenner, Susanne C. [1 ]
Sung, Li-yeng
Zhang, Hongchao
Zhang, Yi
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Displacement obstacle; Clamped Kirchhoff plate; Fourth order variational inequality; Morley element; VARIATIONAL-INEQUALITIES; APPROXIMATION; CONVERGENCE; REGULARITY;
D O I
10.1016/j.cam.2013.02.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates on polygonal domains. Error estimates are derived in the energy norm and the L-infinity norm. The performance of the method is illustrated by numerical experiments. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 50 条
  • [21] A stabilised finite element method for the plate obstacle problem
    Tom Gustafsson
    Rolf Stenberg
    Juha Videman
    BIT Numerical Mathematics, 2019, 59 : 97 - 124
  • [22] A stabilised finite element method for the plate obstacle problem
    Gustafsson, Tom
    Stenberg, Rolf
    Videman, Juha
    BIT NUMERICAL MATHEMATICS, 2019, 59 (01) : 97 - 124
  • [23] Implicit Finite Element Scheme with a Penalty for a Nonlocal Parabolic Obstacle Problem of Kirchhoff Type
    O. V. Glazyrina
    R. Z. Dautov
    E. Y. Myagkova
    Lobachevskii Journal of Mathematics, 2023, 44 : 2675 - 2688
  • [24] Implicit Finite Element Scheme with a Penalty for a Nonlocal Parabolic Obstacle Problem of Kirchhoff Type
    Glazyrina, O. V.
    Dautov, R. Z.
    Myagkova, E. Y.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) : 2675 - 2688
  • [25] Displacement calculus of the functionally graded plates by finite element method
    Marzavan, Silvia
    Nastasescu, Vasile
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 12075 - 12090
  • [26] Galerkin least squares finite element method for the obstacle problem
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    Stenberg, Rolf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 362 - 374
  • [27] Convergence analysis of finite element method for a parabolic obstacle problem
    Gudi, Thirupathi
    Majumder, Papri
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 357 : 85 - 102
  • [28] A C0 Nonconforming Virtual Element Method for the Kirchhoff Plate Obstacle Problem
    Wu, Bangmin
    Qiu, Jiali
    AXIOMS, 2024, 13 (05)
  • [29] Modeling dynamic fracture in Kirchhoff plates and shells using the extended finite element method
    Rouzegar, S. J.
    Mirzaei, M.
    SCIENTIA IRANICA, 2013, 20 (01) : 120 - 130
  • [30] Convergence analysis of a conforming adaptive finite element method for an obstacle problem
    Dietrich Braess
    Carsten Carstensen
    Ronald H. W. Hoppe
    Numerische Mathematik, 2007, 107 : 455 - 471