Thermal energy storage using phase change materials: Techno-economic evaluation of a cold storage installation in an office building

被引:23
|
作者
Tan, Pepe [1 ]
Lindberg, Patrik [2 ]
Eichler, Kaia [2 ]
Loveryd, Per [3 ]
Johansson, Par [1 ]
Kalagasidis, Angela Sasic [1 ]
机构
[1] Chalmers Univ Technol, Dept Architecture & Civil Engn, Div Bldg Technol, Gothenburg, Sweden
[2] AF Poyry AB, Gothenburg, Sweden
[3] Akad Hus AB, Gothenburg, Sweden
关键词
Thermal energy storage; Phase change materials; Mixed integer linear programming; Key performance indicators; OF-THE-ART; TECHNOLOGIES; SYSTEM; PCM;
D O I
10.1016/j.apenergy.2020.115433
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Utilizing the latent heat of solidification and melting of so-called phase change materials (PCMs) allows higher storage densities and increased process flexibility within energy systems. However, there is an existing gap in the current literature studying simultaneously the technical and economic performance of these thermal energy storages within an actual application. Thus, in this work a comprehensive techno-economic analysis of a fullscale storage with 7000 L salt-hydrate surrounding a polypropylene capillary tube heat exchanger is presented. The storage is located in a multi-story office building in Gothenburg, Sweden and is used for daily peak shaving of the building's cooling energy demands. The daily utilizable storage capacity for the installation was determined to be 99kWh, which is 36% of the installed capacity given by the storage manufacturer. The major limiting factor were found to be 60-75% smaller charging rates than what was designed by the manufacturer. Using a mixed integer linear programming model (MILP) to yield optimum scheduling, the storage investment cost limit for a 5 year payback time can be estimated as 9804 SEK (approximate to 921 EUR). These developed key performance indicators can be readily compared against alternative storage technologies and designs in order to select the optimal storage design for equivalent applications. Future work is needed to investigate reasons behind the lower than expected storage capacity.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Thermal energy storage using phase change materials: Fundamentals and applications
    Fleischer, Amy S.
    SpringerBriefs in Applied Sciences and Technology, 2015, 0 (9783319209210):
  • [42] Thermal Enhancement of Solar Energy Storage Using Phase Change Materials
    Darwesh, Bahzad Darwesh
    Hamakhan, Idres Azzat
    Yaqob, Banipal Nanno
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2022, 40 (03) : 758 - 766
  • [43] An overview: Applications of thermal energy storage using phase change materials
    Ali, Shahid
    Deshmukh, S. P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 1231 - 1237
  • [44] TECHNO-ECONOMIC FEASIBILITY ANALYSIS OF SOLAR INDUSTRIAL PROCESS HEAT USING PARTICLE THERMAL ENERGY STORAGE
    Al-Ghussain, Loiy
    Johnson, Taylor
    Martinek, Janna
    Ma, Zhiwen
    PROCEEDINGS OF ASME 2024 18TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2024, 2024,
  • [45] An experimental and numerical method for thermal characterization of Phase Change Materials for Cold Thermal Energy Storage
    Borri, Emiliano
    Sze, Jia Yin
    Tafone, Alessio
    Romagnoli, Alessandro
    Li, Yongliang
    Comodi, Gabriele
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5041 - 5046
  • [46] Techno-economic Performance Evaluation of Direct Steam Generation Solar Tower Plants with Thermal Energy Storage Systems Based on High-temperature Concrete and Encapsulated Phase Change Materials
    Guedez, R.
    Arnaudo, M.
    Topel, M.
    Zanino, R.
    Hassar, Z.
    Laumert, B.
    SOLARPACES 2015: INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2016, 1734
  • [47] Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: A review
    Sidik, Nor Azwadi Che
    Kean, Tung Hao
    Chow, Hoong Kee
    Rajaandra, Aravinthan
    Rahman, Saidur
    Kaur, Jesbains
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 94 : 85 - 95
  • [48] Techno-Economic Forecasts of Lithium Nitrates for Thermal Storage Systems
    Montane, Macarena
    Caceres, Gustavo
    Villena, Mauricio
    O'Ryan, Raul
    SUSTAINABILITY, 2017, 9 (05)
  • [49] Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions
    Matuszewska, Dominika
    Kuta, Marta
    Olczak, Piotr
    ENERGIES, 2020, 13 (13)
  • [50] Flexible phase change materials for thermal energy storage
    Shi, Jinming
    Qin, Mulin
    Aftab, Waseem
    Zou, Ruqiang
    ENERGY STORAGE MATERIALS, 2021, 41 : 321 - 342