Action Recognition Using Low-Rank Sparse Representation

被引:1
|
作者
Cheng, Shilei [1 ]
Gu, Song [2 ]
Ye, Maoquan [1 ]
Xie, Mei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu, Sichuan, Peoples R China
[2] Chengdu Aeronaut Polytech, Dept Aircraft Maintenance Engn, Chengdu, Sichuan, Peoples R China
关键词
human action recognition; low-rank sparse representation; bag of word model; sparse coding representation; low-rank representation; ALGORITHM;
D O I
10.1587/transinf.2017EDL8176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human action recognition in videos draws huge research interests in computer vision. The Bag-of-Word model is quite commonly used to obtain the video level representations, however, BoW model roughly assigns each feature vector to its nearest visual word and the collection of unordered words ignores the interest points' spatial information, inevitably causing nontrivial quantization errors and impairing improvements on classification rates. To address these drawbacks, we propose an approach for action recognition by encoding spatio-temporal log Euclidean covariance matrix (ST-LECM) features within the low-rank and sparse representation framework. Motivated by low rank matrix recovery, local descriptors in a spatial temporal neighborhood have similar representation and should be approximately low rank. The learned coefficients can not only capture the global data structures, but also preserve consistent. Experimental results showed that the proposed approach yields excellent recognition performance on synthetic video datasets and are robust to action variability, view variations and partial occlusion.
引用
收藏
页码:830 / 834
页数:5
相关论文
共 50 条
  • [21] Kernel Low-Rank Representation for face recognition
    Hoangvu Nguyen
    Yang, Wankou
    Shen, Fumin
    Sun, Changyin
    NEUROCOMPUTING, 2015, 155 : 32 - 42
  • [22] Face Recognition Via Non-negative Sparse Low-rank Representation Classification
    Wang, Rong
    Chen, Caikou
    Li, Jingshan
    Dai, Tianchen
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1609 - 1614
  • [23] SPIKE SORTING BASED ON LOW-RANK AND SPARSE REPRESENTATION
    Huang, Libo
    Ling, Bingo Wing-Kuen
    Zeng, Yan
    Gan, Lu
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [24] Robust face recognition via low-rank sparse representation-based classification
    Du H.-S.
    Hu Q.-P.
    Qiao D.-F.
    Pitas I.
    International Journal of Automation and Computing, 2015, 12 (06) : 579 - 587
  • [25] Finger Vein Recognition via Sparse Reconstruction Error Constrained Low-Rank Representation
    Yang, Lu
    Yang, Gongping
    Wang, Kuikui
    Hao, Fanchang
    Yin, Yilong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 4869 - 4881
  • [26] Robust Face Recognition via Low-rank Sparse Representation-based Classification
    Hai-Shun Du
    Qing-Pu Hu
    Dian-Feng Qiao
    Ioannis Pitas
    International Journal of Automation and Computing, 2015, (06) : 579 - 587
  • [27] Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices
    Cai, T. Tony
    Zhang, Anru
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 122 - 132
  • [28] Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
    Gan, Bin
    Zheng, Chun-Hou
    Zhang, Jun
    Wang, Hong-Qiang
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [29] Sparse Low-Rank Component-Based Representation for Face Recognition With Low-Quality Images
    Yang, Shicheng
    Zhang, Le
    He, Lianghua
    Wen, Ying
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (01) : 251 - 261
  • [30] Sparse Individual Low-Rank Component Representation for Face Recognition in the IoT-Based System
    Yang, Shicheng
    Wen, Ying
    He, Lianghua
    Zhou, Mengchu
    Abusorrah, Abdullah
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (24) : 17320 - 17332