Minimal generating sets of maximal size in finite monolithic groups

被引:6
|
作者
Lucchini, Andrea [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
Monolithic groups; Independent generating set;
D O I
10.1007/s00013-013-0583-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by m(G) the largest size of a minimal generating set of a finite group G. We want to estimate the difference m(G) - m(G/N) in the case when N is the unique minimal normal subgroup of G.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 50 条
  • [41] The generating graph of some monolithic groups
    Crestani, Eleonora
    Lucchini, Andrea
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (03) : 615 - 626
  • [42] ON MAXIMAL, MINIMAL OPEN AND CLOSED SETS
    Mukharjee, Ajoy
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 30 (03): : 277 - 282
  • [43] The maximum cardinality of minimal inversion complete sets in finite reflection groups
    Malvenuto, Claudia
    Frajria, Pierluigi Moeseneder
    Orsina, Luigi
    Papi, Paolo
    JOURNAL OF ALGEBRA, 2015, 424 : 330 - 356
  • [44] Walks on generating sets of groups
    Diaconis, P
    Saloff-Coste, L
    INVENTIONES MATHEMATICAE, 1998, 134 (02) : 251 - 299
  • [45] Maximal and minimal semilattices on ordered sets
    McElwee, B
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2001, 18 (02): : 137 - 149
  • [46] On maximal, minimal and mean open sets
    Kallol Bhandhu Bagchi
    Ajoy Mukharjee
    Afrika Matematika, 2019, 30 : 291 - 296
  • [47] MINIMAL AND MAXIMAL OPEN SETS IN GITS
    Kumar, G. K. Mathan
    Annam, G. Hari Siva
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2022, 21 (07): : 4097 - 4109
  • [48] Minimal and maximal matrix convex sets
    Passer, Benjamin
    Shalit, Orr Moshe
    Solel, Baruch
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (11) : 3197 - 3253
  • [49] On maximal, minimal and mean open sets
    Bagchi, Kallol Bhandhu
    Mukharjee, Ajoy
    AFRIKA MATEMATIKA, 2019, 30 (1-2) : 291 - 296
  • [50] Maximal and Minimal Semilattices on Ordered Sets
    Brett McElwee
    Order, 2001, 18 : 137 - 149