Pro-unipotent harmonic actions and dynamical properties of p-adic cyclotomic multiple zeta values

被引:2
|
作者
Jarossay, David [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
关键词
p-adic cyclotomic multiple zeta values; cyclotomic multiple harmonic sums; pro-unipotent harmonic actions; projective line minus three points; pro-unipotent fundamental groupoid; crystalline Frobenius;
D O I
10.2140/ant.2020.14.1711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
p-adic cyclotomic multiple zeta values depend on the choice of a number of iterations of the crystalline Frobenius of the pro-unipotent fundamental groupoid of P-1 \ {0, mu(N), infinity}. In this paper we study how the iterated Frobenius depends on the number of iterations, in relation with the computation of p-adic cyclotomic multiple zeta values in terms of cyclotomic multiple harmonic sums. This provides new results on that computation and the definition of a new pro unipotent harmonic action.
引用
收藏
页码:1711 / 1746
页数:36
相关论文
共 32 条
  • [21] VALUES OF P-ADIC L-FUNCTIONS AT POSITIVE INTEGERS AND P-ADIC LOG MULTIPLE GAMMA FUNCTIONS
    IMAI, H
    TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (04) : 505 - 510
  • [22] Drinfel'd-Ihara relations for p-adic multi-zeta values
    Unver, Sinan
    JOURNAL OF NUMBER THEORY, 2013, 133 (05) : 1435 - 1483
  • [23] ON THE ARITHMETIC PROPERTIES OF THE VALUES OF P-ADIC G-FUNCTIONS
    VAANANEN, K
    ARCHIV DER MATHEMATIK, 1980, 35 (04) : 364 - 373
  • [24] p-adic properties of values of the modular j-function
    Ono, K
    Papanikolas, MA
    GALOIS THEORY AND MODULAR FORMS, 2004, 11 : 357 - 365
  • [25] Recurrent properties of quasi-periodic dynamical systems with multiple frequencies of p-adic Liouville numbers
    Inoue H.
    Naito K.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6 (3) : 195 - 206
  • [26] Fundamentals of p-adic multiple L-functions and evaluation of their special values
    Hidekazu Furusho
    Yasushi Komori
    Kohji Matsumoto
    Hirofumi Tsumura
    Selecta Mathematica, 2017, 23 : 39 - 100
  • [27] Fundamentals of p-adic multiple L-functions and evaluation of their special values
    Furusho, Hidekazu
    Komori, Yasushi
    Matsumoto, Kohji
    Tsumura, Hirofumi
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (01): : 39 - 100
  • [28] p-Adic and analytic properties of period integrals and values of L-functions
    Harris, Michael
    ANNALES MATHEMATIQUES DU QUEBEC, 2016, 40 (02): : 435 - 452
  • [29] On p-Adic Properties of Central L-Values of Quadratic Twists of an Elliptic Curve
    Prasanna, Kartik
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (02): : 400 - 414
  • [30] Multivariate p-adic fermionic q-integral on Zp and related multiple zeta-type functions
    Kim, Min-Soo
    Kim, Taekyun
    Son, Jin-Woo
    ABSTRACT AND APPLIED ANALYSIS, 2008,