Pro-unipotent harmonic actions and dynamical properties of p-adic cyclotomic multiple zeta values

被引:2
|
作者
Jarossay, David [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
关键词
p-adic cyclotomic multiple zeta values; cyclotomic multiple harmonic sums; pro-unipotent harmonic actions; projective line minus three points; pro-unipotent fundamental groupoid; crystalline Frobenius;
D O I
10.2140/ant.2020.14.1711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
p-adic cyclotomic multiple zeta values depend on the choice of a number of iterations of the crystalline Frobenius of the pro-unipotent fundamental groupoid of P-1 \ {0, mu(N), infinity}. In this paper we study how the iterated Frobenius depends on the number of iterations, in relation with the computation of p-adic cyclotomic multiple zeta values in terms of cyclotomic multiple harmonic sums. This provides new results on that computation and the definition of a new pro unipotent harmonic action.
引用
收藏
页码:1711 / 1746
页数:36
相关论文
共 32 条