Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency

被引:40
|
作者
Hiranniramol, Kasidet [1 ]
Chen, Yuhao [1 ,2 ]
Liu, Weijun [1 ,3 ]
Wang, Xiaowei [1 ]
机构
[1] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63110 USA
[3] Nawgen LLC, St Louis, MO USA
基金
美国国家卫生研究院;
关键词
SCALE CRISPR-CAS9 KNOCKOUT; RNA; CAS9; NUCLEASES;
D O I
10.1093/bioinformatics/btaa041
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The development of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has provided a simple yet powerful system for targeted genome editing. In recent years, this system has been widely used for various gene editing applications. The CRISPR editing efficacy is mainly dependent on the single guide RNA (sgRNA), which guides Cas9 for genome cleavage. While there have been multiple attempts at improving sgRNA design, there is a pressing need for greater sgRNA potency and generalizability across various experimental conditions. Results: We employed a unique plasmid library expressed in human cells to quantify the potency of thousands of CRISPR/Cas9 sgRNAs. Differential sequence and structural features among the most and least potent sgRNAs were then used to train a machine learning algorithm for assay design. Comparative analysis indicates that our new algorithm outperforms existing CRISPR/Cas9 sgRNA design tools.
引用
收藏
页码:2684 / 2689
页数:6
相关论文
共 50 条
  • [41] CRISPR/Cas9 editing of carotenoid genes in tomato
    Caterina D’Ambrosio
    Adriana Lucia Stigliani
    Giovanni Giorio
    Transgenic Research, 2018, 27 : 367 - 378
  • [42] CRISPR/CAS9, the King of Genome Editing Tools
    Bannikov, A. V.
    Lavrov, A. V.
    MOLECULAR BIOLOGY, 2017, 51 (04) : 514 - 525
  • [43] CRISPR/Cas9 editing for the treatment of human diseases
    Libertini, Silvana
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2023, 64 : 28 - 28
  • [44] CRISPR/CAS9: THE GOLD STANDARD OF GENOME EDITING?
    Gleeson, Alfie
    Sawyer, Abigail
    BIOTECHNIQUES, 2018, 64 (06) : 239 - 244
  • [45] CRISPR/Cas9 and other techniques for genome editing
    Hartung, Frank
    Schiemann, Jochen
    Sprink, Thorben
    ZWEITES SYMPOSIUM ZIERPFLANZENZUCHTUNG, 2017, 2017, 457 : 36 - 39
  • [46] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [47] CRISPR/Cas9 Essential Gene Editing in Drosophila
    Osadchiy, I. S.
    Kamalyan, S. O.
    Tumashova, K. Y.
    Georgiev, P. G.
    Maksimenko, O. G.
    ACTA NATURAE, 2023, 15 (02): : 70 - 74
  • [48] Optical Control of CRISPR/Cas9 Gene Editing
    Hemphill, James
    Borchardt, Erin K.
    Brown, Kalyn
    Asokan, Aravind
    Deiters, Alexander
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (17) : 5642 - 5645
  • [49] Spatiotemporal control of CRISPR/Cas9 gene editing
    Chenya Zhuo
    Jiabin Zhang
    Jung-Hwan Lee
    Ju Jiao
    Du Cheng
    Li Liu
    Hae-Won Kim
    Yu Tao
    Mingqiang Li
    Signal Transduction and Targeted Therapy, 6
  • [50] Genomic editing in Burkholderia multivorans by CRISPR/Cas9
    Ferreira, Mirela R.
    Queiroga, Vasco
    Moreira, Leonilde M.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2024, 90 (02)