Theoretical and experimental investigation of an absorption refrigeration and pre-desalination system for marine engine exhaust gas heat recovery

被引:33
|
作者
Yuan, Han [1 ,3 ]
Sun, Pengyuan [1 ]
Zhang, Ji [1 ]
Sun, Kunyuan [1 ]
Mei, Ning [1 ]
Zhou, Peilin [2 ]
机构
[1] Ocean Univ China, Coll Engn, 238 Songling Rd, Qingdao 266100, Peoples R China
[2] Univ Strathclyde, Dept Naval Architecture & Marine Engn, Glasgow G4 0LZ, Lanark, Scotland
[3] 238 Songling Rd, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Marine diesel engine; Exhaust gas heat recovery; Absorption refrigeration; Ammonia-water; Seawater freezing desalination; EXERGY-ANALYSIS; ENERGY; OPTIMIZATION; BALANCE; DRIVEN;
D O I
10.1016/j.applthermaleng.2018.12.153
中图分类号
O414.1 [热力学];
学科分类号
摘要
Absorption-refrigeration-cycle-based exhaust gas heat recovery technology is effective in improving the thermal efficiency and fuel economy of marine diesel engines. However, the absorption refrigeration system is inflexible in the start stop operation, and this cannot fulfil the fluctuating demand of refrigeration. This paper presents both the theoretical and experimental investigations of an absorption refrigeration and freezing pre-desalination based marine engine exhaust gas heat recovery system. The energy storage subcycle is introduced to overcome the energy underutilisation and balance the excessive refrigerating output of the absorption refrigeration cycle. Seawater is utilised as the phase-change material and it is pre-desalinated in the energy storage subcycle. A mathematical model of the system is established and experimental investigation is conducted. Furthermore, the theoretical and experimental performances are compared, and an economic analysis of seawater desalination is performed to evaluate its economy. The results show that the total refrigeration output of the system ranges from 6.1 kW to 9.9 kW, and the system COP (Coefficient of Performance) can reach 16% under the experimental operating conditions. Additionally, the salinity of pre-desalinated seawater can be reduced to below 10 ppt. Moreover, the cost of RO (Reverse Osmosis) seawater desalination can be reduced by 26% through the pre desalination process of seawater.
引用
收藏
页码:224 / 236
页数:13
相关论文
共 50 条
  • [31] Experimental study of a diffusion absorption refrigeration cycle supplied by the exhaust waste heat of a sedan car at low engine speeds
    Ramin Farzadi
    Majid Bazargan
    Heat and Mass Transfer, 2020, 56 : 1353 - 1363
  • [32] Experimental investigation of combustion engine with novel jacket and flue gas heat recovery
    Spale, Jan
    Pavlicko, Jan
    Vodicka, Vaclav
    Mascuch, Jakub
    Novotny, Vaclav
    ENERGY REPORTS, 2022, 8 : 593 - 604
  • [33] Experimental investigation of heat recovery in a humidification-dehumidification desalination system via a heat pump
    Shafii, Mohammad Behshad
    Jafargholi, Hamed
    Faegh, Meysam
    DESALINATION, 2018, 437 : 81 - 88
  • [34] Theoretical and experimental investigation of a novel high temperature heat pump system for recovering heat from refrigeration system
    Zhao, Zhaorui
    Xing, Ziwen
    Hou, Feng
    Tian, Yafen
    Jiang, Shaoming
    APPLIED THERMAL ENGINEERING, 2016, 107 : 758 - 767
  • [35] Experimental Analysis of a Laboratory-Scale Diesel Engine Exhaust Heat-Driven Absorption Refrigeration System as a Model for Naval Surface Ship Applications
    Ezgi, Cuneyt
    Bayrak, Sinem
    JOURNAL OF SHIP PRODUCTION AND DESIGN, 2020, 36 (02): : 152 - 159
  • [37] Experimental investigation on latent heat thermal energy storage system for stationary CI engine exhaust
    Johar, Dheeraj Kishor
    Sharma, Dilip
    Soni, Shyam Lal
    Gupta, Pradeep K.
    Goyal, Rahul
    APPLIED THERMAL ENGINEERING, 2016, 104 : 64 - 73
  • [38] An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique
    Saravanan, N.
    Nagarajan, G.
    Kalaiselvan, K. M.
    Dhanasekaran, C.
    RENEWABLE ENERGY, 2008, 33 (03) : 422 - 427
  • [39] Design and Simulation of Exhaust Gas Waste Heat Recovery System of Gasoline Engine Based on Stirling Cycle
    Yu, Yingxiao
    Yuan, Zhaocheng
    Ma, Jiayi
    Li, Shiyu
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 855 - 859
  • [40] Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system
    He, Wei
    Wang, Shixue
    Lu, Chi
    Zhang, Xing
    Li, Yanzhe
    APPLIED ENERGY, 2016, 162 : 1251 - 1258