Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices

被引:101
|
作者
Hoeglund, L. [1 ]
Ting, D. Z. [1 ]
Khoshakhlagh, A. [1 ]
Soibel, A. [1 ]
Hill, C. J. [1 ]
Fisher, A. [1 ]
Keo, S. [1 ]
Gunapala, S. D. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
HGCDTE; GAAS;
D O I
10.1063/1.4835055
中图分类号
O59 [应用物理学];
学科分类号
摘要
Optical modulation response is used to study the influence of radiative, Shockley-Read-Hall, and Auger recombination processes on the minority carrier lifetime in a mid-wave infrared InAs/InAsSb superlattice. A comparison of calculated and measured temperature dependencies shows that the lifetime is influenced mainly by radiative recombination at low temperatures, resulting in an increase of the minority carrier lifetime from 1.8 mu s at 77K to 2.8 mu s at 200 K. At temperatures above 200 K, Auger recombination increases rapidly and limits the lifetime. Shockley-Read-Hall limited lifetimes on the order of 10 mu s are predicted for superlattices with lower background doping concentration. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Study of the radiative and non-radiative recombination processes at dislocations in silicon by photoluminescence and LBIC measurements
    Pizzini, S
    Binetti, S
    Acciarri, M
    Casati, M
    OPTICAL MICROSTRUCTURAL CHARACTERIZATION OF SEMICONDUCTORS, 2000, 588 : 117 - 122
  • [42] RADIATIVE AND NON-RADIATIVE RECOMBINATION IN GAAS/ALXGA1-XAS QUANTUM WELLS
    SERMAGE, B
    ALEXANDRE, F
    BEERENS, J
    TRONC, P
    SUPERLATTICES AND MICROSTRUCTURES, 1989, 6 (04) : 373 - 376
  • [43] Photoluminescence study of carrier recombination processes in InAs/InAsSb type-II superlattices
    Lin, Zhi-Yuan
    Fan, Jin
    Liu, Shi
    Zhang, Yong-Hang
    INFRARED TECHNOLOGY AND APPLICATIONS XLI, 2015, 9451
  • [44] A micro-scale hot-surface device based on non-radiative carrier recombination
    Kovalgin, AY
    Holleman, J
    Iordache, G
    ESSDERC 2004: PROCEEDINGS OF THE 34TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2004, : 353 - 356
  • [45] Regulation of photoprotection by non-radiative charge recombination in Photosystem II
    Cser, K.
    Vass, I.
    PHOTOSYNTHESIS RESEARCH, 2007, 91 (2-3) : 140 - 141
  • [46] Radiative versus non-radiative recombination in high-efficiency mid-IR InSb/InAs/In(Ga,Al)As/GaAs metamorphic nanoheterostructures
    Komkov, O. S.
    Firsov, D. D.
    Chernov, M. Yu
    Solov'ev, V. A.
    Sitnikova, A. A.
    Kop'ev, P. S.
    Ivanov, S. V.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (05)
  • [47] Fast Electrochemical Deposition and Non-Radiative Recombination of ZnO Nanorods
    Yang, Tang
    ACTA OPTICA SINICA, 2020, 40 (16)
  • [48] NON-RADIATIVE RECOMBINATION AT DANGLING BONDS IN A-SI-H
    HALPERN, V
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1989, 114 : 441 - 443
  • [49] Minimizing non-radiative recombination losses in perovskite solar cells
    Deying Luo
    Rui Su
    Wei Zhang
    Qihuang Gong
    Rui Zhu
    Nature Reviews Materials, 2020, 5 : 44 - 60
  • [50] IRON IMPURITIES AS NON-RADIATIVE RECOMBINATION CENTERS IN CHALCOGENIDE GLASSES
    BISHOP, SG
    TAYLOR, PC
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1979, 40 (06): : 483 - 495