A fiber dimension theorem for essential and canonical dimension

被引:10
|
作者
Loetscher, Roland [1 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
essential dimension; canonical dimension; algebraic group; fiber; category fibered in groupoids; algebraic stack; algebraic torus;
D O I
10.1112/S0010437X12000565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well-known fiber dimension theorem in algebraic geometry says that for every morphism f : X -> Y of integral schemes of finite type the dimension of every fiber of f is at least dim X dim Y. This has recently been generalized by Brosnan, Reichstein and Vistoli to certain morphisms of algebraic stacks f : X -> Y, where the usual dimension is replaced by essential dimension. We will prove a general version for morphisms of categories fibered in groupoids. Moreover, we will prove a variant of this theorem, where essential dimension and canonical dimension are linked. These results let us relate essential dimension to canonical dimension of algebraic groups. In particular, using the recent computation of the essential dimension of algebraic tori by MacDonald, Meyer, Reichstein and the author, we establish a lower bound on the canonical dimension of algebraic tori.
引用
收藏
页码:148 / 174
页数:27
相关论文
共 50 条
  • [21] Canonical kernel dimension reduction
    Tao, Chenyang
    Feng, Jianfeng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 107 : 131 - 148
  • [22] CANONICAL BIMODULES AND DOMINANT DIMENSION
    Fang, Ming
    Kerner, Otto
    Yamagata, Kunio
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (02) : 847 - 872
  • [23] Essential dimension: a survey
    Alexander S. Merkurjev
    Transformation Groups, 2013, 18 : 415 - 481
  • [24] Tori and essential dimension
    Favi, Giordano
    Florence, Mathieu
    JOURNAL OF ALGEBRA, 2008, 319 (09) : 3885 - 3900
  • [25] Essential dimension: a survey
    Merkurjev, Alexander S.
    TRANSFORMATION GROUPS, 2013, 18 (02) : 415 - 481
  • [26] Essential dimension of quadrics
    Karpenko, N
    Merkurjev, A
    INVENTIONES MATHEMATICAE, 2003, 153 (02) : 361 - 372
  • [27] Essential dimension of quadrics
    Nikita Karpenko
    Alexander Merkurjev
    Inventiones mathematicae, 2003, 153 : 361 - 372
  • [28] Essential dimension of cubics
    Berhuy, G
    Favi, G
    JOURNAL OF ALGEBRA, 2004, 278 (01) : 199 - 216
  • [29] Spinors and essential dimension
    Garibaldi, Skip
    Guralnick, Robert M.
    Premet, Alexander
    COMPOSITIO MATHEMATICA, 2017, 153 (03) : 535 - 556
  • [30] CANONICAL DIVISORS AND ADDITIVITY OF KODAIRA DIMENSION FOR MORPHISMS OR RELATIVE DIMENSION ONE
    VIEHWEG, E
    COMPOSITIO MATHEMATICA, 1977, 35 (02) : 197 - 223