A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model

被引:25
|
作者
Wu, Xinrong [1 ,2 ]
Zhang, Shaoqing [3 ]
Liu, Zhengyu [4 ,5 ]
Rosati, Anthony [3 ]
Delworth, Thomas L. [3 ]
机构
[1] GFDL Wisconsin Joint Visiting Program, Princeton, NJ USA
[2] State Ocean Adm, Natl Marine Data & Informat Serv, Key Lab Marine Environm Informat Technol, Tianjin, Peoples R China
[3] Princeton Univ, GFDL, NOAA, Princeton, NJ 08544 USA
[4] Univ Wisconsin, Dept Atmospher & Ocean Sci, Ctr Climate Res, Madison, WI USA
[5] Peking Univ, Lab Ocean Atmospher Studies, Beijing 100871, Peoples R China
关键词
Observing system; Geographic dependence; Parameter estimation; Coupled model; SIMULATED RADAR DATA; ROOT KALMAN FILTER; DATA ASSIMILATION; MICROPHYSICAL PARAMETERS; SIMULTANEOUS STATE; ATMOSPHERIC STATE; ERROR COVARIANCE; PART II; ADJUSTMENT;
D O I
10.1007/s00382-012-1385-1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Observational information has a strong geographic dependence that may directly influence the quality of parameter estimation in a coupled climate system. Using an intermediate atmosphere-ocean-land coupled model, the impact of geographic dependent observing system on parameter estimation is explored within a "twin" experiment framework. The "observations" produced by a "truth" model are assimilated into an assimilation model in which the most sensitive model parameter has a different geographic structure from the "truth", for retrieving the "truth" geographic structure of the parameter. To examine the influence of data-sparse areas on parameter estimation, the twin experiment is also performed with an observing system in which the observations in some area are removed. Results show that traditional single-valued parameter estimation (SPE) attains a global mean of the "truth", while geographic dependent parameter optimization (GPO) can retrieve the "truth" structure of the parameter and therefore significantly improves estimated states and model predictability. This is especially true when an observing system with data-void areas is applied, where the error of state estimate is reduced by 31 % and the corresponding forecast skill is doubled by GPO compared with SPE.
引用
收藏
页码:1789 / 1798
页数:10
相关论文
共 50 条
  • [21] Radiative and conductive heat transfer:: a coupled model for parameter estimation
    Lazard, M
    André, S
    Maillet, D
    Degiovanni, A
    HIGH TEMPERATURES-HIGH PRESSURES, 2000, 32 (01) : 9 - 17
  • [22] CHARACTERISTIC PARAMETER ESTIMATION OF AMB SUPPORTED COUPLED ROTOR SYSTEM
    Kuppa, Sampath Kumar
    Lai, Mohit
    PROCEEDINGS OF THE ASME GAS TURBINE INDIA CONFERENCE, 2017, VOL 2, 2018,
  • [23] Parameter estimation for dynamic model of the financial system
    Novotna, Veronika
    Stepankova, Vladena
    18TH INTERNATIONAL CONFERENCE ENTERPRISE AND COMPETITIVE ENVIRONMENT, 2015, : 628 - 635
  • [24] Global modal parameter estimation of weak nonlinear MDOF system with coupled modes -: Experimental study
    Foltête, E
    Fillod, R
    Raynaud, JL
    IUTAM/IFTOMM SYMPOSIUM ON SYNTHESIS OF NONLINEAR DYNAMICAL SYSTEMS, 1999, 73 : 129 - 138
  • [25] Soil loss rate estimation using a hybrid model of geographic information system coupled with fuzzy logic technique
    Halefom, A.
    Ahmad, I.
    Dar, M. A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 19 (01) : 421 - 432
  • [26] Soil loss rate estimation using a hybrid model of geographic information system coupled with fuzzy logic technique
    A. Halefom
    I. Ahmad
    M. A. Dar
    International Journal of Environmental Science and Technology, 2022, 19 : 421 - 432
  • [27] Parameter Optimization for Real-World ENSO Forecast in an Intermediate Coupled Model
    Zhao, Yuchu
    Liu, Zhengyu
    Zheng, Fei
    Jin, Yishuai
    MONTHLY WEATHER REVIEW, 2019, 147 (05) : 1429 - 1445
  • [28] Impact of Measurement Selection on Load Model Parameter Estimation
    Guo, Siming
    Shetye, Komal S.
    Overbye, Thomas J.
    Zhu, Hao
    2017 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2017,
  • [29] Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model
    Du, Zhenyang
    Zhang, Xuefeng
    Li, Dong
    Zhang, Zhiyuan
    Zhang, Lianxin
    Fu, Hongli
    Zhang, Liang
    JOURNAL OF MARINE SYSTEMS, 2023, 237
  • [30] Parameter estimation in a generalized discrete-time model of density dependence
    Leo Polansky
    Perry de Valpine
    James O. Lloyd-Smith
    Wayne M. Getz
    Theoretical Ecology, 2008, 1 : 221 - 229