Machine Learning in Neuroimaging: A New Approach to Understand Acupuncture for Neuroplasticity

被引:7
|
作者
Yin, Tao [1 ,2 ]
Ma, Peihong [1 ,2 ]
Tian, Zilei [1 ,2 ]
Xie, Kunnan [1 ,2 ]
He, Zhaoxuan [1 ,2 ]
Sun, Ruirui [1 ,2 ]
Zeng, Fang [1 ,2 ,3 ]
机构
[1] Chengdu Univ Tradit Chinese Med, Acupuncture & Tuina Sch, Third Teaching Hosp, Chengdu, Sichuan, Peoples R China
[2] Chengdu Univ Tradit Chinese Med, Acupuncture & Brain Sci Res Ctr, Chengdu, Sichuan, Peoples R China
[3] Chengdu Univ Tradit Chinese Med, Key Lab Sichuan Prov Acupuncture & Chronobiol, Chengdu, Sichuan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SUPPORT VECTOR MACHINE; MULTIVARIATE CLASSIFICATION; PHYSICAL-EXERCISE; HUMAN BRAIN; PREDICTION; FMRI; DISORDER; SPECIFICITY; BIOMARKERS; NETWORK;
D O I
10.1155/2020/8871712
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The effects of acupuncture facilitating neural plasticity for treating diseases have been identified by clinical and experimental studies. In the last two decades, the application of neuroimaging techniques in acupuncture research provided visualized evidence for acupuncture promoting neuroplasticity. Recently, the integration of machine learning (ML) and neuroimaging techniques becomes a focus in neuroscience and brings a new and promising approach to understand the facilitation of acupuncture on neuroplasticity at the individual level. This review is aimed at providing an overview of this rapidly growing field by introducing the commonly used ML algorithms in neuroimaging studies briefly and analyzing the characteristics of the acupuncture studies based on ML and neuroimaging, so as to provide references for future research.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Quantifying performance of machine learning methods for neuroimaging data
    Jollans, Lee
    Boyle, Rory
    Artiges, Eric
    Banaschewski, Tobias
    Desrivieres, Sylvane
    Grigis, Antoine
    Martinot, Jean-Luc
    Paus, Tomas
    Smolka, Michael N.
    Walter, Henrik
    Schumann, Gunter
    Garavan, Hugh
    Whelan, Robert
    NEUROIMAGE, 2019, 199 : 351 - 365
  • [42] Network traffic analysis using machine learning: an unsupervised approach to understand and slice your network
    Ons Aouedi
    Kandaraj Piamrat
    Salima Hamma
    J. K. Menuka Perera
    Annals of Telecommunications, 2022, 77 : 297 - 309
  • [43] Large-Scale Machine Learning and Neuroimaging in Psychiatry
    Thompson, Paul
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S51 - S51
  • [44] Predicting survival in glioblastoma with multimodal neuroimaging and machine learning
    Patrick H. Luckett
    Michael Olufawo
    Bidhan Lamichhane
    Ki Yun Park
    Donna Dierker
    Gabriel Trevino Verastegui
    Peter Yang
    Albert H. Kim
    Milan G. Chheda
    Abraham Z. Snyder
    Joshua S. Shimony
    Eric C. Leuthardt
    Journal of Neuro-Oncology, 2023, 164 (2) : 309 - 320
  • [45] Review of Machine Learning Classifier Toolbox of Neuroimaging Data
    Lad, Rashmi
    Metkewar, P. S.
    2020 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2020, : 175 - 179
  • [46] Machine learning in neuroimaging: from research to clinical practice
    Phd, Karl-Heinz Nenning
    Langs, Georg
    RADIOLOGIE, 2022, 62 (SUPPL 1): : S1 - S10
  • [47] Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry
    Nielsen, Ashley N.
    Barch, Deanna M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    Greene, Deanna J.
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2020, 5 (08) : 791 - 798
  • [48] The role of machine learning in neuroimaging for drug discovery and development
    Orla M. Doyle
    Mitul A. Mehta
    Michael J. Brammer
    Psychopharmacology, 2015, 232 : 4179 - 4189
  • [49] Neuroplasticity and learning lead a new era in stroke rehabilitation
    Carey, Leeanne
    INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION, 2007, 14 (06): : 250 - 251
  • [50] A Machine Learning-Based Approach for Predicting Surgeons' Subjective Experience and Skill Levels: Neuroimaging Study
    Keles, H. O.
    Cengiz, C.
    Demiral, I.
    Ozmen, M. M.
    Omurtag, A.
    BRITISH JOURNAL OF SURGERY, 2021, 108