Helical wave-front laser beam generated with a microelectromechanical systems (MEMS)-based device

被引:3
|
作者
Zhou, GY [1 ]
Chau, FS [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Micro & Nano Syst Initiat, Singapore 119260, Singapore
关键词
microelectromechanical systems (MEMS); micromirrors; optical vortex; trapping;
D O I
10.1109/LPT.2005.862002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a novel helical wave-front laser beam generator based on microelectromechanical systems (MEMS) technology. The device consists of a circular array of micromirrors; each can be electrostatically actuated to move perpendicular to the substrate to modulate the phase of an incident laser beam. A prototype device has been developed using the polysilicon multiuser MEMS processes. The ability of the device to transform a plane wave into an l = 3 helical wave-front laser beam has been experimentally demonstrated. Additionally, the device is faster by two orders of magnitude or more than conventional liquid crystal spatial light modulators. In combination with a rapid optical beam steering system, the proposed device might provide new capabilities for fast-scanned optical tweezer arrays, allowing them to combine optical vortices and conventional traps together to trap, guide, and rotate a wide variety of particles.
引用
收藏
页码:292 / 294
页数:3
相关论文
共 50 条
  • [21] ON THE STRUCTURE OF WAVE-FRONT OF COUPLED MODE SYSTEMS
    KOROLENKO, PV
    TIKHOMIROV, VN
    KVANTOVAYA ELEKTRONIKA, 1991, 18 (09): : 1139 - 1141
  • [22] MICROCOLLIMATED LASER DIODE WITH LOW WAVE-FRONT ABERRATION
    OGATA, S
    SEKII, H
    MAEDA, T
    GOTO, H
    YAMASHITA, T
    IMANAKA, K
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1989, 1 (11) : 354 - 355
  • [23] THERMALLY INDUCED WAVE-FRONT DISTORTIONS IN LASER WINDOWS
    GRENINGER, CE
    APPLIED OPTICS, 1986, 25 (15): : 2474 - 2475
  • [24] ON MULTIPLE USE OF WAVE-FRONT REVERSAL IN LASER ARRANGEMENTS
    RAGOZINE, EN
    PLOTKIN, ME
    KVANTOVAYA ELEKTRONIKA, 1980, 7 (07): : 1582 - 1585
  • [25] PHOTODISSOCIATIVE LASER WITH THE WAVE-FRONT CONVERSION FOR LTS STUDIES
    BESSARAB, AV
    DOLGOPOLOV, YV
    ZHIDKOV, NV
    KIRILLOV, GA
    KOCHEMASOV, GG
    KULIKOV, SM
    MURUGOV, VM
    NIKOLAEV, VD
    PEVNYI, SN
    RYADOV, AV
    SMIRNOV, AB
    SMYSHLYAEV, SP
    SUKHAREV, SA
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1988, 52 (02): : 333 - 335
  • [26] Study of the dividing method of the wave-front spatial frequency of the high-power-laser beam
    Liu, Hongjie
    Jing, Feng
    Zuo, Yanlei
    Peng, Zhitao
    Hu, Dongxia
    Zhang, Chunling
    Zhou, Wei
    Li, Qiang
    Zhang, Kun
    Jiang, Lei
    Zuo, Ming
    Sun, Zhiqiang
    Guangzi Xuebao/Acta Photonica Sinica, 2006, 35 (10): : 1464 - 1467
  • [27] Wave-front coded optical readout for the MEMS-based uncooled infrared imaging systemaf
    Li, Tian
    Zhao, Yuejin
    Dong, Liquan
    Liu, Xiaohua
    Jia, Wei
    Hui, Mei
    Yu, Xiaomei
    Gong, Cheng
    Liu, Weiyu
    OPTICAL DESIGN AND TESTING V, 2012, 8557
  • [28] WAVE-FRONT REPLICATION VERSUS BEAM CLEANUP BY STIMULATED SCATTERING
    FLUSBERG, A
    KORFF, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1987, 4 (05) : 687 - 690
  • [29] LIGHT-BEAM WAVE-FRONT REVERSAL IN RESONANT MEDIA
    KUKHTAREV, NV
    SEMENETS, TI
    KVANTOVAYA ELEKTRONIKA, 1980, 7 (08): : 1721 - 1727
  • [30] Wave-front dynamics in systems with directional anomalous diffusion
    Hernandez, D.
    Barrio, R.
    Varea, C.
    PHYSICAL REVIEW E, 2006, 74 (04):