Symmetrization of the non-rigid registration problem using inversion-invariant energies: Application to multiple sclerosis

被引:0
|
作者
Cachier, P [1 ]
Rey, D [1 ]
机构
[1] INRIA Sophia, Epidaure Project, F-06902 Sophia Antipolis, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Without any prior knowledge, the non-rigid registration of two images is a symmetric problem, i.e. we expect to find inverse results if we exchange these images. This symmetry is nonetheless broken in most of intensity-based algorithms. In this paper, we explain the reasons why most non-rigid registration algorithms are asymmetric. We show that the asymmetry of quadratic regularization energies causes an oversmoothing of expending regions relatively to shrinking regions, hampering in particular registration-based detection of evolving processes, We therefore propose to use an inversion-invariant energy to symmetrize the registration problem. To minimize this energy, two methods are used, depending on whether we compute the inverse transformation or not. Finally, we illustrate the interest of the theory using both synthetic and real data, in particular to improve the detection and segmentation of evolving lesions in MR images of patients suffering from multiple sclerosis.
引用
收藏
页码:472 / 481
页数:10
相关论文
共 50 条
  • [41] Optimization of Non-rigid Demons Registration Using Cuckoo Search Algorithm
    Sayan Chakraborty
    Nilanjan Dey
    Sourav Samanta
    Amira S. Ashour
    C. Barna
    M. M. Balas
    Cognitive Computation, 2017, 9 : 817 - 826
  • [42] A parallel implementation of non-rigid registration using a volumetric biomechanical model
    Sermesant, M
    Clatz, O
    Li, Z
    Lantéri, S
    Delingette, H
    Ayache, N
    BIOMEDICAL IMAGE REGISTRATION, 2003, 2717 : 398 - 407
  • [43] Non-rigid point set registration using color and data downsampling
    Saval-Calvo, Marcelo
    Orts-Escolano, Sergio
    Azorin-Lopez, Jorge
    Garcia-Rodriguez, Jose
    Fuster-Guillo, Andres
    Morell-Gimenez, Vicente
    Cazorla, Miguel
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [44] Automatic construction of statistical shape models using non-rigid registration
    Cootes, Tim
    COMPUTATIONAL VISION AND MEDICAL IMAGING PROCESSING, 2008, : 3 - 4
  • [45] Non-rigid registration using gradient of self-similarity response
    Huang, James L.
    Rodriguez, Jeffrey J.
    IMAGE AND VISION COMPUTING, 2014, 32 (11) : 825 - 834
  • [46] A POINT BASED NON-RIGID REGISTRATION FOR TUMOR RESECTION USING IMRI
    Liu, Yixun
    Yao, Chengjun
    Zhou, LiangFu
    Chrisochoides, Nikos
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 1217 - 1220
  • [47] Approximated Curvature Penalty in Non-rigid Registration Using Pairwise MRFs
    Glocker, Ben
    Komodakis, Nikos
    Paragios, Nikos
    Navab, Nassir
    ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 1101 - +
  • [48] Optimization of Non-rigid Demons Registration Using Cuckoo Search Algorithm
    Chakraborty, Sayan
    Dey, Nilanjan
    Samanta, Sourav
    Ashour, Amira S.
    Barna, C.
    Balas, M. M.
    COGNITIVE COMPUTATION, 2017, 9 (06) : 817 - 826
  • [49] Non-rigid brain image registration using a statistical deformation model
    Wouters, Jeroen
    D'Agostino, Emiliano
    Maes, Frederik
    Vandermeulen, Dirk
    Suetens, Paul
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [50] Real-Time Image Mosaicing Using Non-rigid Registration
    de Souza, Rafael Henrique Castanheira
    Okutomi, Masatoshi
    Toni, Akihiko
    ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PT I, 2011, 7087 : 311 - 322