Symmetrization of the non-rigid registration problem using inversion-invariant energies: Application to multiple sclerosis

被引:0
|
作者
Cachier, P [1 ]
Rey, D [1 ]
机构
[1] INRIA Sophia, Epidaure Project, F-06902 Sophia Antipolis, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Without any prior knowledge, the non-rigid registration of two images is a symmetric problem, i.e. we expect to find inverse results if we exchange these images. This symmetry is nonetheless broken in most of intensity-based algorithms. In this paper, we explain the reasons why most non-rigid registration algorithms are asymmetric. We show that the asymmetry of quadratic regularization energies causes an oversmoothing of expending regions relatively to shrinking regions, hampering in particular registration-based detection of evolving processes, We therefore propose to use an inversion-invariant energy to symmetrize the registration problem. To minimize this energy, two methods are used, depending on whether we compute the inverse transformation or not. Finally, we illustrate the interest of the theory using both synthetic and real data, in particular to improve the detection and segmentation of evolving lesions in MR images of patients suffering from multiple sclerosis.
引用
收藏
页码:472 / 481
页数:10
相关论文
共 50 条
  • [1] Non-rigid registration using morphons
    Wrangsjö, A
    Pettersson, J
    Knutsson, H
    IMAGE ANALYSIS, PROCEEDINGS, 2005, 3540 : 501 - 510
  • [2] Multiple Non-Rigid Surface Detection and Registration
    Wu, Yi
    Ijiri, Yoshihisa
    Yang, Ming-Hsuan
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1992 - 1999
  • [3] Non-rigid shape registration using similarity-invariant differential coordinates
    Yamazaki, Shuntaro
    Kagami, Satoshi
    Mochimaru, Masaaki
    2013 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2013), 2013, : 191 - 198
  • [4] Optimized imaging using non-rigid registration
    Berkels, Benjamin
    Binev, Peter
    Blom, Douglas A.
    Dahmen, Wolfgang
    Sharpley, Robert C.
    Vogt, Thomas
    ULTRAMICROSCOPY, 2014, 138 : 46 - 56
  • [5] NON-RIGID POINT SET REGISTRATION WITH MULTIPLE FEATURES
    Tang, HaoLin
    Yang, Yang
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 268 - 273
  • [6] Non-rigid registration using distance functions
    Paragios, N
    Rousson, M
    Ramesh, V
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 89 (2-3) : 142 - 165
  • [7] NON-RIGID MULTIPLE POINT SET REGISTRATION USING LATENT GAUSSIAN MIXTURE
    Huang, Hao
    Chen, Cheng
    Fang, Yi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3181 - 3185
  • [8] A method for global non-rigid registration of multiple thin structures
    Brophy, Mark
    Chaudhury, Ayan
    Beauchemin, Steven S.
    Barron, John L.
    2015 12TH CONFERENCE ON COMPUTER AND ROBOT VISION CRV 2015, 2015, : 214 - 221
  • [9] Global temporal registration of multiple non-rigid surface sequences
    Huang, Peng
    Budd, Chris
    Hilton, Adrian
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [10] Non-rigid Shape Registration using Curvature Information
    Borocco, Albane
    Marcotegui, Beatriz
    VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4, 2019, : 334 - 340