A simple model of ac hopping surface conductivity in ionic liquids

被引:5
|
作者
Raicopol, M. [1 ]
Dascalu, C. [2 ]
Devan, C. [3 ]
Alexe-Ionescu, A. L. [2 ,4 ]
Barbero, G. [4 ,5 ]
机构
[1] Univ Politehn Bucuresti, Fac Appl Chem & Mat Sci, Str Polizu 1, Bucharest 011061, Romania
[2] Univ Politehn Bucuresti, Fac Appl Sci, Splaiul Independentei 313, Bucharest 060042, Romania
[3] Univ Politehn Bucuresti, Fac Elect Telecommun & Informat Technol, B Dul Iuliu Maniu 1-3, Bucharest 061071, Romania
[4] Politecn Torino, Dipartimento Sci Applicata, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[5] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Kashirskoye Shosse 31, Moscow 115409, Russia
关键词
Ionic liquids; Non-blocking electrodes; Electrical impedance spectroscopy; AC hopping surface conductivity; ELECTRICAL DOUBLE-LAYER; ADSORPTION;
D O I
10.1016/j.elecom.2019.01.010
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The boundary conditions proposed to discuss the charge exchange taking place in an ionic liquid in contact with non-blocking electrodes are reconsidered in a dynamic situation. Assuming that the variation of the bulk ionic current density depends linearly on the surface value of the ionic current density, the frequency dependence of the phenomenological parameter is determined. The analysis has been performed in the framework where the relaxation times are smaller than a maximum relaxation time tau(M), and that the response function is independent on the value of the relaxation time. Using simple physical considerations, an expression for the surface conductivity describing the ionic charge exchange at the electrode is obtained. According to our calculations, its frequency dependence is similar to that predicted for the electric conductivity in disordered materials when the mechanism is of the hopping type. From measurements of impedance spectroscopy, by the best fit of the experimental data, the temperature dependence of the hopping time, of the dc surface conductivity, and of the diffusion coefficient are derived. They are in good agreement with the theoretical predictions obtained with the random distribution of surface energy barrier.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 50 条
  • [21] Proton hopping in spatially confined ionic liquids
    Reimer, Jeffrey A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [22] AC HOPPING CONDUCTIVITY OF A ONE-DIMENSIONAL BOND-PERCOLATION MODEL
    ODAGAKI, T
    LAX, M
    PHYSICAL REVIEW LETTERS, 1980, 45 (10) : 847 - 850
  • [23] Conductivity of ionic liquids in mixtures
    Jarosik, A
    Krajewski, SR
    Lewandowski, A
    Radzimski, P
    JOURNAL OF MOLECULAR LIQUIDS, 2006, 123 (01) : 43 - 50
  • [24] ELECTRONIC CONDUCTIVITY IN IONIC LIQUIDS
    EMI, T
    BOCKRIS, JOM
    ELECTROCHIMICA ACTA, 1971, 16 (12) : 2081 - &
  • [25] Conductivity prediction model for ionic liquids using machine learning
    Datta, R.
    Ramprasad, R.
    Venkatram, S.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (21):
  • [26] Model for the conductivity of ionic liquids based on an infinite dilution of holes
    Abbott, AP
    CHEMPHYSCHEM, 2005, 6 (12) : 2502 - 2505
  • [27] Synthesis and ionic conductivity of polymer ionic liquids
    Ya. S. Vygodskii
    O. A. Mel’nik
    A. S. Shaplov
    E. I. Lozinskaya
    I. A. Malyshkina
    N. D. Gavrilova
    Polymer Science Series A, 2007, 49 : 256 - 261
  • [28] Synthesis and ionic conductivity of polymer ionic liquids
    Vygodskii, Ya. S.
    Mel'nik, O. A.
    Shaplov, A. S.
    Lozinskaya, E. I.
    Malyshkina, I. A.
    Gavrilova, N. D.
    POLYMER SCIENCE SERIES A, 2007, 49 (03) : 256 - 261
  • [29] Morphology and ionic conductivity of polymerized ionic liquids
    University of Pennsylvania
  • [30] Ionic Association in Binary Ionic Liquids by Conductivity
    Ning Hui
    Hou Min-Qiang
    Yang De-Zhong
    Kang Xin-Chen
    Han Bu-Xing
    ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (10) : 2107 - 2113