We develop an approach, based on multiple imputation, to using auxiliary variables to recover information from censored observations in survival analysis. We apply the approach to data from an AIDS clinical trial comparing ZDV and placebo, in which CD4 count is the time-dependent auxiliary variable. To facilitate imputation, a joint model is developed for the data, which includes a hierarchical change-point model for CD4 counts and a tune-dependent proportional hazards model for the time to AIDS. Markov chain Monte Carlo methods are used to multiply impute event times for censored cases. The augmented data are then analyzed and the results combined using standard multiple-imputation techniques. A comparison of our multiple-imputation approach to simply analyzing the observed data indicates that multiple imputation leads to a small change in the estimated effect of ZDV and smaller estimated standard errors. A sensitivity analysis suggests that the qualitative findings are reproducible under a variety of imputation models. A simulation study indicates that improved efficiency over standard analyses and partial corrections for dependent censoring can result. An issue that arises with our approach, however, is whether the analysis of primary interest and the imputation model axe compatible.
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
Conlon, Anna S. C.
Taylor, Jeremy M. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
Taylor, Jeremy M. G.
Sargent, Daniel J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Publ Hlth, Div Biostat, Mayo Clin, Rochester, MN USAUniv Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
Sargent, Daniel J.
Yothers, Greg
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Grad Sch Publ Hlth, Dept Biostat, Pittsburgh, PA 15261 USA
Univ Pittsburgh, Natl Surg Adjuvant Breast & Bowel Project, Dept Biostat, Pittsburgh, PA 15261 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
机构:
Univ Vita Salute San Raffaele, Univ Ctr Stat Biomed Sci, I-20132 Milan, Italy
Dalle Molle Inst Artificial Intelligence, Manno, Switzerland
Oncol Res Inst, Bellinzona, SwitzerlandUniv Vita Salute San Raffaele, Univ Ctr Stat Biomed Sci, I-20132 Milan, Italy
Rancoita, Paola M. V.
Zaffalon, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Dalle Molle Inst Artificial Intelligence, Manno, SwitzerlandUniv Vita Salute San Raffaele, Univ Ctr Stat Biomed Sci, I-20132 Milan, Italy
Zaffalon, Marco
Zucca, Emanuele
论文数: 0引用数: 0
h-index: 0
机构:
Oncol Inst Southern Switzerland, Bellinzona, SwitzerlandUniv Vita Salute San Raffaele, Univ Ctr Stat Biomed Sci, I-20132 Milan, Italy
Zucca, Emanuele
Bertoni, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Oncol Res Inst, Bellinzona, Switzerland
Oncol Inst Southern Switzerland, Bellinzona, SwitzerlandUniv Vita Salute San Raffaele, Univ Ctr Stat Biomed Sci, I-20132 Milan, Italy
Bertoni, Francesco
de Campos, Cassio P.
论文数: 0引用数: 0
h-index: 0
机构:
Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast, Antrim, North IrelandUniv Vita Salute San Raffaele, Univ Ctr Stat Biomed Sci, I-20132 Milan, Italy