Influence of Zn on the oxide layer on AISI 316L(NG) stainless steel in simulated pressurised water reactor coolant

被引:37
|
作者
Betova, Iva [2 ]
Bojinov, Martin [1 ]
Kinnunen, Petri [3 ]
Lundgren, Klas [4 ]
Saario, Tirno [3 ]
机构
[1] Univ Chem Technol & Met, Dept Phys Chem, BU-1756 Sofia, Bulgaria
[2] Tech Univ Sofia, Dept Chem, Sofia 1000, Bulgaria
[3] Tech Res Ctr Finland, VTT Mat & Bldg, FIN-02044 Espoo, Finland
[4] ALARA Engn AB, SE-73050 Skultuna, Sweden
关键词
Stainless steel; Pressurised water reactor coolant; Oxide film growth; Zinc incorporation; Kinetic model; HIGH-TEMPERATURE WATER; MIXED-CONDUCTION MODEL; METALS-BASED CIVILIZATION; POINT-DEFECT MODEL; FE-CR ALLOYS; ELECTROCHEMICAL-BEHAVIOR; AQUEOUS-ELECTROLYTES; CORROSION BEHAVIOR; KINETIC-PARAMETERS; HYDROGENATED WATER;
D O I
10.1016/j.electacta.2008.08.040
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The oxidation of AISI 316L(NG) stainless steel in simulated pressurised water reactor (PWR) coolant with or without addition of 1 ppm Zn at 280 degrees C for up to 96 h has been characterised in situ by electrochemical impedance spectroscopy (EIS), both at the corrosion potential and under anodic polarisation up to 0.5 V vs. the reversible hydrogen electrode (RHE). Additional tests were performed in simulated PWR coolant with the addition of 0.01 M Na2B4O7 to exclude the effect of pH excursions probably due to Zn hydrolysis reactions. The thickness and in-depth composition of the oxide films formed at open circuit and at 0.5 vs. RHE in the investigated electrolytes have been estimated from X-ray photoelectron spectroscopy (XPS) depth profiles. The kinetic and transport parameters characterising the oxide layer growth have been estimated using a calculational procedure based on the mixed conduction model for oxide films. Successful simulations of both the EIS and XPS data have been obtained. The parameter estimates are discussed in terms of the effect of Zn on the oxide layers on stainless steel in PWR conditions. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1056 / 1069
页数:14
相关论文
共 50 条
  • [31] Modelling of Stainless Steel AISI 316L in Finite Element Simulations
    Snstab, Johan Kolst
    Faksvåg, Kristian Ullern
    Jakobsen, Lars Omland
    Clausen, Arild Holm
    ce/papers, 2021, 4 (2-4) : 1589 - 1598
  • [32] Corrosion and wear behaviors of boronized AISI 316L stainless steel
    Yusuf Kayali
    Aysel Büyüksaǧiş
    Yılmaz Yalçin
    Metals and Materials International, 2013, 19 : 1053 - 1061
  • [33] Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing
    Hryniewicz, Tadeusz
    Rokosz, Krzysztof
    Filippi, Massimiliano
    MATERIALS, 2009, 2 (01) : 129 - 145
  • [34] Fatigue behaviour of duplex treated AISI 316L stainless steel
    Celik, A.
    Arslan, Y.
    Yetim, A. F.
    Efeoglu, I.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2007, 45 (01): : 35 - 40
  • [35] The effects of plasma disruption simulation on AISI 316L stainless steel
    Campagnoli, E
    FUSION ENGINEERING AND DESIGN, 1997, 36 (2-3) : 407 - 414
  • [36] Glow discharge nitriding of AISI 316L austenitic stainless steel: Influence of treatment pressure
    Borgioli, F
    Fossati, A
    Galvanetto, E
    Bacci, T
    Pradelli, G
    SURFACE & COATINGS TECHNOLOGY, 2006, 200 (18-19): : 5505 - 5513
  • [37] The Influence of Nanographite Addition on the Compaction Process and Properties of AISI 316L Sintered Stainless Steel
    Kozub, Barbara
    Uthayakumar, Marimuthu
    Kazior, Jan
    MATERIALS, 2022, 15 (10)
  • [38] Influence of 40% Cold Working and Annealing on Precipitation in AISI 316L Austenitic Stainless Steel
    Bartova, Katarina
    Domankova, Maria
    Barta, Jozef
    Pastier, Peter
    MATERIALS, 2022, 15 (18)
  • [39] Plasma sintering of AISI 316L stainless steel: The influence of the processing cycle on the sample density
    Muzart, JLR
    Batista, VJ
    Franco, CV
    Klein, AN
    ADVANCES IN POWDER METALLURGY & PARTICULATE MATERIALS - 1997, 1997, : 377 - 384
  • [40] Influence of Ethanol, Acidity and Chloride Concentration on the Corrosion Resistance of AISI 316L Stainless Steel
    Ferreira, Elivelton A.
    Della Noce, Rodrigo
    Fugivara, Cecilio S.
    Benedetti, Assis V.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2013, 24 (03) : 397 - 405