Hypersurfaces of Kenmotsu manifolds endowed with a quarter-symmetric non-metric connection

被引:0
|
作者
De, Uday Chand [1 ]
Mondal, Abul Kalam [2 ]
机构
[1] Univ Calcutta, Dept Pure Math, Kolkata 700019, W Bengal, India
[2] Dum Dum Motijheel Rabindra Mahavidyalaya, Dept Math, Kolkata 700019, W Bengal, India
来源
关键词
Codazzi equations; Gauss equations; hypersurfaces; Kenmotsu manifold; quarter-symmetric non-metric connection; SUBMANIFOLDS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The object of the present paper is to define a quarter-symmetric non-metric connection in a Kenmotsu manifold and consider non-invariant and anti-invariant hypersurfaces of Kenmotsu manifold endowed with a quarter-symmetric non-metric connection. Finally, we obtain the Gauss and Codazzi equations with respect to a quarter-symmetric non-metric connection.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 50 条
  • [31] Gauss and Ricci Equations in Contact Manifolds with a Quarter-Symmetric Metric Connection
    De, Avik
    Uddin, Siraj
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (04) : 1689 - 1703
  • [32] INVARIANT SUBMANIFOLDS OF KENMOTSU MANIFOLDS ADMITTING QUARTER SYMMETRIC METRIC CONNECTION
    Anitha, B. S.
    Bagewadi, C. S.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (03): : 99 - 114
  • [33] On phi-pseudo symmetric LP-Sasakian manifolds with respect to quarter-symmetric non-metric connections
    Dey, Santu
    Bhattacharyya, Arindam
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (02): : 151 - 164
  • [34] Gauss and Ricci Equations in Contact Manifolds with a Quarter-Symmetric Metric Connection
    Avik De
    Siraj Uddin
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 1689 - 1703
  • [35] STUDY OF A HYPERBOLIC KAEHLERIAN MANIFOLDS EQUIPPED WITH A QUARTER-SYMMETRIC METRIC CONNECTION
    Chaturvedi, B. B.
    Gupta, B. K.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (01): : 115 - 127
  • [36] ALMOST α-COSYMPLECTIC f-MANIFOLDS ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
    Beyendi, Selahattin
    Aktan, Nesip
    Sivridag, Ali Ihsan
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (01): : 175 - 185
  • [37] On a Ricci Quarter-Symmetric Metric Recurrent Connection and a Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a Riemannian Manifold
    Zhao, Di
    Jen, Cholyong
    Ho, Talyun
    FILOMAT, 2020, 34 (03) : 795 - 806
  • [38] TRANSVERSAL HYPERSURFACES OF ALMOST HYPERBOLIC CONTACT MANIFOLDS WITH A QUARTER SYMMETRIC NON METRIC CONNECTION
    Rahman, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2013, 3 (01): : 108 - 116
  • [39] ON QUARTER-SYMMETRIC NON -METRIC CONNECTION ON AN ALMOST HERMITIAN MANIFOLD
    Chaubey, S. K.
    Ojha, R. H.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (02): : 77 - 83
  • [40] Some Properties of Kenmotsu Manifolds Admitting a New Type of Semi-Symmetric Non-Metric Connection
    Singh, Abhishek
    Das, Lovejoy S.
    Prasad, Rajendra
    Kumar, Lalit
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (01): : 145 - 160