Matrix Variate RBM Model with Gaussian Distributions

被引:0
|
作者
Liu, Simeng [1 ]
Sun, Yanfeng [1 ]
Hu, Yongli [1 ]
Gao, Junbin [2 ]
Ju, Fujiao [1 ]
Yin, Baocai [1 ,3 ]
机构
[1] Beijing Univ Technol, BJUT Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
[2] Univ Sydney, Business Sch, Business Analyt Discipline, Camperdown, NSW 2006, Australia
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Coll Comp Sci & Technol, Dalian 116620, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Restricted Boltzmann Machine (RBM) is a particular type of random neural network models modeling vector data based on the assumption of Bernoulli distribution. For multidimensional and non-binary data, it is necessary to vectorize and discretize the information in order to apply the conventional RBM. It is well-known that vectorization would destroy internal structure of data, and the binary units will limit the applying performance due to fickle real data. To address these issues, this paper proposes a Matrix variate Gaussian Restricted Boltzmann Machine (MVGRBM) model for matrix data whose entries follow Gaussian distributions. Compared with some other RBM algorithms, MVGRBM can model real value data better and it has good performance in image classification. To prove that adding Gaussian parameters could model input data well, we compared the reconstruction performance of the Gaussian parameters updating and fixed.
引用
收藏
页码:808 / 815
页数:8
相关论文
共 50 条
  • [31] STOCHASTIC REPRESENTATIONS OF THE MATRIX VARIATE SKEW ELLIPTICALLY CONTOURED DISTRIBUTIONS
    Zheng, Shimin
    Zhang, Chunming
    Knisley, Jeff
    ADVANCES AND APPLICATIONS IN STATISTICS, 2013, 33 (02) : 83 - 98
  • [32] Moments and quadratic forms of matrix variate skew normal distributions
    Zheng, Shimin
    Knisley, Jeff
    Wang, Kesheng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (03) : 794 - 803
  • [33] SOME INFERENCE PROBLEMS FOR MATRIX VARIATE ELLIPTICALLY CONTOURED DISTRIBUTIONS
    GUPTA, AK
    VARGA, T
    STATISTICS, 1995, 26 (03) : 219 - 229
  • [34] A NEW DEFINITION OF FORM-INVARIANCE MATRIX VARIATE DISTRIBUTIONS
    Arashi, M.
    Bekker, A.
    Ratnaparkhi, M.
    SOUTH AFRICAN STATISTICAL JOURNAL, 2014, 48 (02) : 205 - 212
  • [35] Jones-Balakrishnan Property for Matrix Variate Beta Distributions
    Daya K. Nagar
    Alejandro Roldán-Correa
    Saralees Nadarajah
    Sankhya A, 2023, 85 : 1489 - 1509
  • [36] Jones-Balakrishnan Property for Matrix Variate Beta Distributions
    Nagar, Daya K.
    Roldan-Correa, Alejandro
    Nadarajah, Saralees
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 85 (2): : 1489 - 1509
  • [37] Pseudo-inverse multivariate/matrix-variate distributions
    Zhang, Zhihua
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (08) : 1684 - 1692
  • [38] SOME DISTRIBUTIONS OF LATENT ROOTS OF A COMPLEX WISHART MATRIX VARIATE
    HIRAKAWA, F
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1975, 27 (02) : 357 - 363
  • [39] Jones-Balakrishnan Property for Matrix Variate Beta Distributions
    Nagar, Daya K.
    Roldan-Correa, Alejandro
    Nadarajah, Saralees
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (02): : 1489 - 1509
  • [40] Image Segmentation Using Matrix-Variate Lindley Distributions
    Mouna, Zitouni
    Mariem, Tounsi
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 389 - 398