Matrix Variate RBM Model with Gaussian Distributions

被引:0
|
作者
Liu, Simeng [1 ]
Sun, Yanfeng [1 ]
Hu, Yongli [1 ]
Gao, Junbin [2 ]
Ju, Fujiao [1 ]
Yin, Baocai [1 ,3 ]
机构
[1] Beijing Univ Technol, BJUT Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
[2] Univ Sydney, Business Sch, Business Analyt Discipline, Camperdown, NSW 2006, Australia
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Coll Comp Sci & Technol, Dalian 116620, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Restricted Boltzmann Machine (RBM) is a particular type of random neural network models modeling vector data based on the assumption of Bernoulli distribution. For multidimensional and non-binary data, it is necessary to vectorize and discretize the information in order to apply the conventional RBM. It is well-known that vectorization would destroy internal structure of data, and the binary units will limit the applying performance due to fickle real data. To address these issues, this paper proposes a Matrix variate Gaussian Restricted Boltzmann Machine (MVGRBM) model for matrix data whose entries follow Gaussian distributions. Compared with some other RBM algorithms, MVGRBM can model real value data better and it has good performance in image classification. To prove that adding Gaussian parameters could model input data well, we compared the reconstruction performance of the Gaussian parameters updating and fixed.
引用
收藏
页码:808 / 815
页数:8
相关论文
共 50 条
  • [1] MATRIX VARIATE PARETO DISTRIBUTIONS
    Zinodiny, Shokofeh
    Nadarajah, Saralees
    MATHEMATICA SLOVACA, 2021, 71 (02) : 475 - 490
  • [2] VOICE CONVERSION BASED ON MATRIX VARIATE GAUSSIAN MIXTURE MODEL
    Saito, Daisuke
    Doi, Hidenobu
    Minematsu, Nobuaki
    Hirose, Keikichi
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 567 - 571
  • [3] Duality between matrix variate t and matrix variate VG distributions
    Haffar, Solomon W.
    Seneta, Eugene
    Gupta, Arjun K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) : 1467 - 1475
  • [4] Three skewed matrix variate distributions
    Gallaugher, Michael P. B.
    McNicholas, Paul D.
    STATISTICS & PROBABILITY LETTERS, 2019, 145 : 103 - 109
  • [5] Matrix variate skew normal distributions
    Chen, JT
    Gupta, AK
    STATISTICS, 2005, 39 (03) : 247 - 253
  • [6] On matrix variate skew-normal distributions
    Harrar, Solomon W.
    Gupta, Arjun K.
    STATISTICS, 2008, 42 (02) : 179 - 194
  • [7] Finite mixtures of skewed matrix variate distributions
    Gallaugher, Michael P. B.
    McNicholas, Paul D.
    PATTERN RECOGNITION, 2018, 80 : 83 - 93
  • [8] Singular matric and matrix variate t distributions
    Diaz-Garcia, Jose A.
    Gutierrez-Jaimez, Ramon
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2382 - 2387
  • [9] Finite Mixtures of Matrix Variate t Distributions
    Dogru, Fatma Zehra
    Bulut, Y. Murat
    Arslan, Olcay
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (02): : 335 - 341
  • [10] CHARACTERIZATION OF MATRIX VARIATE NORMAL-DISTRIBUTIONS
    GUPTA, AK
    VARGA, T
    JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 41 (01) : 80 - 88