The Meshfree Analysis of Geometrically Nonlinear Problem Based on Radial Basis Reproducing Kernel Particle Method

被引:15
|
作者
Liu, Zheng [1 ]
Wei, Gaofeng [1 ]
Wang, Zhiming [1 ]
Qiao, Jinwei [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mech & Automot Engn, Jinan 250353, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Meshfree method; reproducing kernel particle method; radial basis function; geometrically nonlinear problem; numerical analysis; PETROV-GALERKIN METHOD; NUMERICAL-SIMULATION; MESHLESS METHOD; FINITE; SHELLS; FLOW;
D O I
10.1142/S1758825120500441
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based on the reproducing kernel particle method (RKPM) and the radial basis function (RBF), the radial basis reproducing kernel particle method (RRKPM) is presented for solving geometrically nonlinear problems. The advantages of the presented method are that it can eliminate the negative effect of diverse kernel functions on the computational accuracy and has greater computational accuracy and better convergence than the RKPM. Using the weak form of Galerkin integration and the Total Lagrangian (T.L.) formulation, the correlation formulae of the RRKPM for geometrically nonlinear problem are obtained. Newton-Raphson (N-R) iterative method is utilized in the process of numerical solution. Moreover, penalty factor, the scaling parameter, the shaped parameter of the RBF and loading step number are discussed. To prove validity of the proposed method, several numerical examples are simulated and compared to finite element method (FEM) solutions.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] A Lagrangian reproducing kernel particle method for metal forming analysis
    Chen, JS
    Pan, C
    Roque, CMOL
    Wang, HP
    COMPUTATIONAL MECHANICS, 1998, 22 (03) : 289 - 307
  • [42] A reproducing kernel particle method for meshless analysis of microelectromechanical systems
    Aluru, NR
    COMPUTATIONAL MECHANICS, 1999, 23 (04) : 324 - 338
  • [43] A reproducing kernel particle method for meshless analysis of microelectromechanical systems
    N. R. Aluru
    Computational Mechanics, 1999, 23 : 324 - 338
  • [44] A Lagrangian reproducing kernel particle method for metal forming analysis
    Jiun-Shyan Chen
    C. Pan
    C. M. O. L. Roque
    Hui-Ping Wang
    Computational Mechanics, 1998, 22 : 289 - 307
  • [45] NUMERICAL SOLUTION OF BIDIRECTIONAL FUNCTIONALLY GRADED MATERIALS USING A NOVEL MESHLESS GLOBAL RADIAL BASIS REPRODUCING KERNEL PARTICLE METHOD
    Qin, Shaopeng
    Yin, Deshun
    Han, Baozhi
    Tian, Mingyuan
    Chen, Xuan
    Ma, Liangzhu
    Li, Lirui
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2025, 20 (01) : 33 - 53
  • [46] Reproducing kernel particle method in smoothed particle hydrodynamics
    Yin, Jianwei
    Ma, Zhibo
    Jisuan Wuli/Chinese Journal of Computational Physics, 2009, 26 (04): : 553 - 558
  • [47] h-adaptivity analysis based on multiple scale reproducing kernel particle method
    Zhang Zhi-qian
    Zhou Jin-xiong
    Wang Xue-ming
    Zhang Yan-fen
    Zhang Ling
    Applied Mathematics and Mechanics, 2005, 26 (8) : 1064 - 1071
  • [48] h-ADAPTIVITY ANALYSIS BASED ON MULTIPLE SCALE REPRODUCING KERNEL PARTICLE METHOD
    张智谦
    周进雄
    王学明
    张艳芬
    张陵
    Applied Mathematics and Mechanics(English Edition), 2005, (08) : 1064 - 1071
  • [49] h-adaptivity analysis based on multiple scale reproducing kernel particle method
    Zhang, ZQ
    Zhou, JX
    Wang, XM
    Zhang, YF
    Zhang, L
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (08) : 1064 - 1071
  • [50] Iterative method of solving Cauchy problem with reproducing kernel for nonlinear hyperbolic equations
    吴勃英
    谢鸿政
    Journal of Harbin Institute of Technology, 2001, (01) : 41 - 46