Triples of orthogonal Latin and Youden rectangles for small orders

被引:2
|
作者
Jager, Gerold [1 ]
Markstrom, Klas [1 ]
Ohman, Lars-Daniel [1 ]
Shcherbak, Denys [1 ]
机构
[1] Umea Unviersitet, Dept Math & Math Stat, S-90187 Umea, Sweden
关键词
Latin rectangle; orthogonal designs; SQUARES;
D O I
10.1002/jcd.21642
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We have performed a complete enumeration of nonisotopic triples of mutually orthogonal kxn Latin rectangles for k <= n <= 7. Here we will present a census of such triples, classified by various properties, including the order of the autotopism group of the triple. As part of this, we have also achieved the first enumeration of pairwise orthogonal triples of Youden rectangles. We have also studied orthogonal triples of kx8 rectangles which are formed by extending mutually orthogonal triples with nontrivial autotopisms one row at a time, and requiring that the autotopism group is nontrivial in each step. This class includes a triple coming from the projective plane of order 8. Here we find a remarkably symmetrical pair of triples of 4x8 rectangles, formed by juxtaposing two selected copies of complete sets of mutually orthogonal Latin squares of order 4.
引用
收藏
页码:229 / 250
页数:22
相关论文
共 50 条
  • [41] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (02) : 231 - 236
  • [42] ENUMERATION OF TRUNCATED LATIN RECTANGLES
    LIGHT, FW
    FIBONACCI QUARTERLY, 1979, 17 (01): : 34 - 36
  • [43] On Computing the Number of Latin Rectangles
    Stones, Rebecca J.
    Lin, Sheng
    Liu, Xiaoguang
    Wang, Gang
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1187 - 1202
  • [44] Latin rectangles and quadrature formulas
    Dobrovol'skii, N. M.
    Dobrovol'skii, N. N.
    Rebrova, I. Yu.
    Balaba, I. N.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 82 - 88
  • [45] ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES
    GODSIL, CD
    MCKAY, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) : 19 - 44
  • [46] JOINTLY EXTENDABLE LATIN RECTANGLES
    HORAK, P
    KREHER, DL
    ROSA, A
    UTILITAS MATHEMATICA, 1989, 36 : 193 - 195
  • [47] Permanents, matchings and Latin rectangles
    Wanless, IM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 169 - 170
  • [48] Enumerating partial Latin rectangles
    Falcon, Raul M.
    Stones, Rebecca J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02): : 1 - 41
  • [49] A RESULT ON GENERALIZED LATIN RECTANGLES
    DENG, CL
    LIM, CK
    DISCRETE MATHEMATICS, 1988, 72 (1-3) : 71 - 80
  • [50] ENUMERATION OF SOME 7 X-15 YOUDEN SQUARES AND CONSTRUCTION OF SOME 7 X-15 DOUBLE YOUDEN RECTANGLES
    PREECE, DA
    UTILITAS MATHEMATICA, 1992, 41 : 51 - 62