On fractional Schrodinger equation in α-dimensional fractional space

被引:48
|
作者
Eid, Rajeh [2 ]
Muslih, Sami I. [3 ]
Baleanu, Dumitru [1 ]
Rabei, E. [4 ,5 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Atilim Univ, Dept Math, TR-06836 Incek Ankara, Turkey
[3] Al Azhar Univ, Dept Phys, Gaza, Israel
[4] Jerash Private Univ, Dept Sci, Jerash, Jordan
[5] Mutah Univ, Dept Phys, Al Karak, Jordan
关键词
Fractional space; Schrodinger equation; Fractional dimension; Radial equation;
D O I
10.1016/j.nonrwa.2008.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schrodinger equation is solved in a-dimensional fractional space with a Coulomb potential proportional to 1/r(beta-2), 2 <= beta <= 4. The wave functions are studied in terms of spatial dimensionality alpha and beta and the results for beta = 3 are compared with those obtained in the literature. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1299 / 1304
页数:6
相关论文
共 50 条
  • [41] ANALYTICAL SOLUTION OF THE SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Abdel-Salam, Emad A-B.
    Yousif, Eltayeb A.
    El-Aasser, Mostafa A.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 19 - 34
  • [42] Time-space fractional Schrodinger like equation with a nonlocal term
    Jiang, X. Y.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01): : 61 - 70
  • [43] A Fractional Schrodinger Equation and Its Solution
    Muslih, Sami I.
    Agrawal, Om P.
    Baleanu, Dumitru
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (08) : 1746 - 1752
  • [44] The fractional Schrodinger equation for delta potentials
    de Oliveira, Edmundo Capelas
    Costa, Felix Silva
    Vaz, Jayme, Jr.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
  • [45] ON SOLUTIONS OF LOCAL FRACTIONAL SCHRODINGER EQUATION
    Yilmazer, Resat
    Demirel, Neslihan S.
    THERMAL SCIENCE, 2019, 23 (S1929-S1934): : S1929 - S1934
  • [46] On the Landis conjecture for the fractional Schrodinger equation
    Kow, Pu-Zhao
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (03) : 1023 - 1077
  • [47] On a fractional Schrodinger equation with periodic potential
    Fang, Fei
    Ji, Chao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1517 - 1530
  • [48] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [49] Fractional Schrodinger equation in gravitational optics
    Iomin, Alexander
    MODERN PHYSICS LETTERS A, 2021, 36 (14)
  • [50] Petviashvili Method for the Fractional Schrodinger Equation
    Bayindir, Cihan
    Farazande, Sofi
    Altintas, Azmi Ali
    Ozaydin, Fatih
    FRACTAL AND FRACTIONAL, 2023, 7 (01)