Thickness dependence of mode I interlaminar fracture toughness in a carbon fiber thermosetting composite

被引:18
|
作者
Kravchenko, Oleksandr G. [1 ]
Kravchenko, Sergii G. [2 ]
Sun, Chin-Teh [2 ]
机构
[1] Case Western Reserve Univ, Case Sch Engn, Dept Macromol Sci & Engn, 314 Kent Hill Smith Bldg, Cleveland, OH 44106 USA
[2] Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave,Armstrong Hall Engn, W Lafayette, IN 47907 USA
关键词
K-dominance zone; Fracture process zone; Non-singular opening stress; Apparent fracture toughness; DOUBLE-CANTILEVER BEAM; DELAMINATION; EPOXY; LIMITATIONS; MECHANICS; SPECIMEN; GEOMETRY; GROWTH; SIZE;
D O I
10.1016/j.compstruct.2016.10.088
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The relation of the non-singular opening stress component with apparent fracture toughness was investigated for unidirectional carbon-fiber laminates by means of double cantilever beam experiments in which laminate thickness was varied. It was found that a sample configuration with smaller thickness related to a higher apparent fracture toughness measurement. This result was explained by the presence of a negative non-singular opening stress component, which was found to decrease with thickness. The experimental procedure utilized first crack propagation from the initial polytetrafluoroethylene insert to avoid ambiguity of defining crack location due to crack curving, resulting in a wider crack front and fiber bridging. The two dimensional finite element analyses were used to calculate the corresponding singular and non-singular stress components and the energy release rates. Based on the experimental results a two parameter linear elastic fracture mechanics model was calibrated to incorporate the thickness dependence of the apparent fracture toughness. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:538 / 546
页数:9
相关论文
共 50 条
  • [31] Model I Interlaminar Fracture Toughness of Carbon Fiber Reinforced Polymer Matrix Composites
    Ji, Aihong
    Lu, Min
    Zha, Meng
    Dong, Benzheng
    Gao, Lihong
    Dai, Zhendong
    ADVANCES IN MATERIALS AND MATERIALS PROCESSING IV, PTS 1 AND 2, 2014, 887-888 : 81 - +
  • [32] Mixed Mode I/II Interlaminar Fracture Toughness of Carbon Fiber/RTM-6 Laminates Manufactured by VARTM
    Mendonca Sales, Rita de Cassia
    Guimaraes, Fernando
    Gouvea, Ricardo Francisco
    Candido, Geraldo Mauricio
    Donadon, Mauricio Vicente
    POLYMER COMPOSITES, 2019, 40 : E1029 - E1040
  • [33] Mode II Interlaminar Fracture Toughness of Carbon Fabric Composite Laminates with Carbon Nanotube Oriented by Magnet
    Xu, Xinguang
    Zhou, Zhenggang
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS I, 2017, 1820
  • [34] Effects of carbon nanotubes on the interlaminar shear strength and fracture toughness of carbon fiber composite laminates: a review
    Zhang, Ce
    Zhang, Guoli
    Shi, XiaoPing
    Wang, Xi
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (04) : 2388 - 2410
  • [35] Effects of carbon nanotubes on the interlaminar shear strength and fracture toughness of carbon fiber composite laminates: a review
    Ce Zhang
    Guoli Zhang
    XiaoPing Shi
    Xi Wang
    Journal of Materials Science, 2022, 57 : 2388 - 2410
  • [36] The distinctiveness of measuring interlaminar fracture toughness by the mode I method
    Dordevic, Isidor
    Gordic, Milan
    Pesikan, Danijela
    Stevanovic, Momcilo
    HEMIJSKA INDUSTRIJA, 2007, 61 (02) : 79 - 82
  • [37] Mode I interlaminar fracture toughness behavior and mechanisms of bamboo
    Chen, Qi
    Dai, Chunping
    Fang, Changhua
    Chen, Meiling
    Zhang, Shuqin
    Liu, Rong
    Liu, Xianmiao
    Fei, Benhua
    MATERIALS & DESIGN, 2019, 183
  • [38] The toughness contribution of bamboo node to the Mode I interlaminar fracture toughness of bamboo
    Fuli Wang
    Zhuoping Shao
    Yijun Wu
    Dong Wu
    Wood Science and Technology, 2014, 48 : 1257 - 1268
  • [39] The toughness contribution of bamboo node to the Mode I interlaminar fracture toughness of bamboo
    Wang, Fuli
    Shao, Zhuoping
    Wu, Yijun
    Wu, Dong
    WOOD SCIENCE AND TECHNOLOGY, 2014, 48 (06) : 1257 - 1268
  • [40] Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer
    Arai, Masahiro
    Noro, Yukihiro
    Sugimoto, Koh-Ichi
    Endo, Morinobu
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (02) : 516 - 525