WHEN IS THE RING OF REAL MEASURABLE FUNCTIONS A HEREDITARY RING?

被引:0
|
作者
Hejazipour, H. [1 ]
Naghipour, A. R. [1 ]
机构
[1] Shahrekord Univ, Dept Math Sci, POB 115, Shahrekord, Iran
来源
关键词
Measurable functions; hereditary rings; projective prime ideals; PROJECTIVE IDEALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M(X, A, mu) be the ring of real-valued measurable functions on a measure space (X, A, mu). In this paper, we characterize the maximal ideals in the rings of real measurable functions and as a consequence, we determine when M(X, A, mu) is a hereditary ring.
引用
收藏
页码:1905 / 1912
页数:8
相关论文
共 50 条
  • [41] The graded ring of quantum theta functions for noncommutative torus with real multiplication
    Vlasenko, Mariya
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [42] When the associated graded ring of a semigroup ring is Complete Intersection
    D'Anna, M.
    Micale, V.
    Sammartano, A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (06) : 1007 - 1017
  • [43] When is a Ring Road a 'Ring Road'? A Brief Perceptual Study
    Potie, Quentin
    Mackaness, William A.
    Touya, Guillaume
    25TH AGILE CONFERENCE ON GEOGRAPHIC INFORMATION SCIENCE ARTIFICIAL INTELLIGENCE IN THE SERVICE OF GEOSPATIAL TECHNOLOGIES, 2022, 3
  • [44] Maximal Ideals in Rings of Real Measurable Functions
    Estaji, A. A.
    Darghadam, A. Mahmoudi
    Yousefpour, H.
    FILOMAT, 2018, 32 (15) : 5191 - 5203
  • [45] ON ALMOST MEASURABLE REAL-VALUED FUNCTIONS
    Kharazishvili, Alexander B.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2010, 47 (02) : 257 - 266
  • [46] When the Night Bells Ring
    Spratford, Becky
    LIBRARY JOURNAL, 2022, 147 (10) : 124 - 124
  • [47] WHEN THE DUAL OF AN IDEAL IS A RING
    ANDERSON, DF
    HOUSTON JOURNAL OF MATHEMATICS, 1983, 9 (03): : 325 - 332
  • [48] When the Night Bells Ring
    Gardner, James
    LIBRARY JOURNAL, 2022, 147 (12) : 52 - 52
  • [49] When is the dual of an ideal a ring?
    Houston, EG
    Kabbaj, SE
    Lucas, TG
    Mimouni, A
    JOURNAL OF ALGEBRA, 2000, 225 (01) : 429 - 450
  • [50] When is a simple ring noetherian?
    VanHuynh, D
    Jain, SK
    LopezPermouth, SR
    JOURNAL OF ALGEBRA, 1996, 184 (02) : 786 - 794