Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet

被引:227
|
作者
Buchanan, Lauren E. [1 ]
Dunkelberger, Emily B. [1 ]
Tran, Huong Q. [1 ]
Cheng, Pin-Nan [2 ]
Chiu, Chi-Cheng [3 ,4 ]
Cao, Ping [5 ]
Raleigh, Daniel P. [5 ]
de Pablo, Juan J. [3 ,4 ]
Nowick, James S. [2 ]
Zanni, Martin T. [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[3] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA
[4] Argonne Natl Lab, Lemont, IL 60439 USA
[5] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
inhibitors; aggregation pathway; vibrational coupling; POLYPEPTIDE IAPP; AMYLIN FIBRILS; SOLID-STATE; ISLET; PROTEIN; AGGREGATION; SPECTROSCOPY; FIBRILLOGENESIS; IDENTIFICATION; INHIBITOR;
D O I
10.1073/pnas.1314481110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel beta-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize beta-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric beta-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.
引用
收藏
页码:19285 / 19290
页数:6
相关论文
共 50 条
  • [31] Thermodynamics of β-amyloid fibril formation
    Tiana, G
    Simona, F
    Brogliaa, RA
    Colombo, G
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (17): : 8307 - 8317
  • [32] Mechanisms of amyloid fibril formation
    N. V. Dovidchenko
    E. I. Leonova
    O. V. Galzitskaya
    Biochemistry (Moscow), 2014, 79 : 1515 - 1527
  • [33] Mechanisms of Amyloid Fibril Formation
    Dovidchenko, N. V.
    Leonova, E. I.
    Galzitskaya, O. V.
    BIOCHEMISTRY-MOSCOW, 2014, 79 (13) : 1515 - 1527
  • [34] Modeling amyloid fibril formation
    N. V. Dovidchenko
    O. V. Galzitskaya
    Biochemistry (Moscow), 2011, 76 : 366 - 373
  • [35] Modeling of amyloid fibril formation
    Dovidchenko, N. V.
    Galzitskaya, O. V.
    FEBS JOURNAL, 2011, 278 : 368 - 368
  • [36] Copper and amyloid fibril formation
    Brown, David R.
    FEBS JOURNAL, 2007, 274 (15) : 3755 - 3755
  • [37] Mechanisms of Transthyretin Inhibition of IAPP Amyloid Formation
    Wasana Jayaweera, Sanduni
    Surano, Solmaz
    Pettersson, Nina
    Oskarsson, Elvira
    Lettius, Lovisa
    Gharibyan, Anna L.
    Anan, Intissar
    Olofsson, Anders
    BIOMOLECULES, 2021, 11 (03) : 1 - 14
  • [38] Macromolecular Crowding as a Suppressor of Human IAPP Fibril Formation and Cytotoxicity
    Seeliger, Janine
    Werkmueller, Alexander
    Winter, Roland
    PLOS ONE, 2013, 8 (07):
  • [39] Amyloid fibril formation by human stefins: Structure, mechanism & putative functions
    Zerovnik, Eva
    Staniforth, Rosemary A.
    Turk, Dusan
    BIOCHIMIE, 2010, 92 (11) : 1597 - 1607
  • [40] The N-terminal repeat domain of α-synuclein inhibits β-sheet and amyloid fibril formation
    Kessler, JC
    Rochet, JC
    Lansbury, PT
    BIOCHEMISTRY, 2003, 42 (03) : 672 - 678