Identification of Auto-Regressive Exogenous Hammerstein Models Based on Support Vector Machine Regression

被引:9
|
作者
Al-Dhaifllah, Mujahed [1 ]
Westwick, David T. [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Syst Engn, Dhahran 31261, Saudi Arabia
[2] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hammerstein; identification; support vector machines (SVMs); SYSTEMS;
D O I
10.1109/TCST.2012.2228193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper extends the algorithms used to fit standard support vector machines (SVMs) to the identification of auto-regressive exogenous (ARX) input Hammerstein models consisting of a SVM, which models the static nonlinearity, followed by an ARX representation of the linear element. The model parameters can be estimated by minimizing an epsilon-insensitive loss function, which can be either linear or quadratic. In addition, the value of the uncertainty level, epsilon, can be specified by the user, which gives control over the sparseness of the solution. The effects of these choices are demonstrated using both simulated and experimental data.
引用
收藏
页码:2083 / 2090
页数:8
相关论文
共 50 条
  • [41] GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
    You, Jiaxuan
    Ying, Rex
    Ren, Xiang
    Hamilton, William L.
    Leskovec, Jure
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [42] Fault detection based on auto-regressive extreme learning machine for nonlinear dynamic processes
    Chen, Yang
    Tong, Chudong
    Ge, Yinghui
    Lan, Ting
    APPLIED SOFT COMPUTING, 2021, 106
  • [43] Discrete Auto-regressive Variational Attention Models for Text Modeling
    Fang, Xianghong
    Bai, Haoli
    Li, Jian
    Xu, Zenglin
    Lyu, Michael
    King, Irwin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [44] Dissecting Recall of Factual Associations in Auto-Regressive Language Models
    Geval, Mor
    Bastings, Jasmijn
    Filippoval, Katja
    Globerson, Amir
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 12216 - 12235
  • [45] Back-propagation algorithm to estimate the parameters of auto-regressive exogenous model
    Xu, Tianyang
    Chen, Jing
    Rong, Yingjiao
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2021, 37 (3-4) : 224 - 231
  • [46] Indirect auto-regressive exogenous modeling of ship course-keeping motion
    Lu Q.-Z.
    Wu J.
    Chen B.-J.
    Yang X.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2021, 38 (01): : 53 - 62
  • [47] Auto-regressive model based input and parameter estimation for nonlinear finite element models
    Castiglione, Juan
    Astroza, Rodrigo
    Azam, Saeed Eftekhar
    Linzell, Daniel
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 143
  • [48] A Nonlinear Auto-Regressive Volterra Model Based on FPGA
    Deng, Bin
    Li, Hongji
    Su, Fei
    Wang, Jiang
    Liu, Chen
    Qin, Yingmei
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 962 - 966
  • [49] Uniqueness of Iris Pattern Based on the Auto-Regressive Model
    Schmid, Natalia A.
    Valenti, Matthew C.
    Hampel, Katelyn M.
    Zuo, Jinyu
    Das, Priyanka
    Schuckers, Stephanie
    Skufca, Joseph
    SENSORS, 2024, 24 (09)
  • [50] Auto-Regressive Coefficient Estimation Based on the GABS and DNN
    Cui Z.-H.
    Bao C.-C.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (01): : 29 - 39